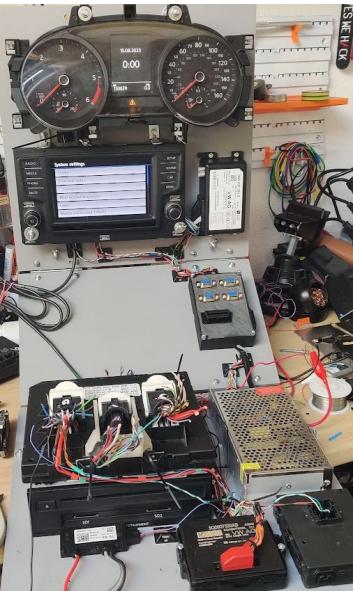


Connected Car Hacking


Building a test bench

Quarkslab

Usage of an automotive test-bench

- ▶ Have a functional set of **ECUs**
- ▶ No risk of **breaking your car**
- ▶ Control of the various **on-board network/bus** and **I/Os**

Which car to work on ?

- ▶ If you have choice, select a model **you could have access to**
- ▶ Beware of **too old** (missing useful functionalities/protocols) or **too recent** model (ECU price, communication encryption, ...)
- ▶ Choosing a **common model** allows to easily get access to spare ECUs

Illustration: [link](#)

Which ECU to focus on

- ▶ **Instrument Cluster:** provide a lot of outputs to understand what's happening on the bench, good starting point
- ▶ **Infotainment:** a lot of connectivity (Wi-Fi, Bluetooth, sometime 3GPP), verbose logs
- ▶ **Telematic:** external connectivity using 3GPP modem, most critical attack surface, but may require infotainment unit to have active traffic to backend
- ▶ **Body Control Module:** core of the car, handle most of the time the wake-up frames, locking systems...
- ▶ **Gateway:** critical security component, could also handle wake-up frames
- ▶ **Other ECUs:** depending on your needs and topics of interest (RF/RFID with RKE/PKE, Airbag crash data logger, V2G...)

Where to find target ECUs

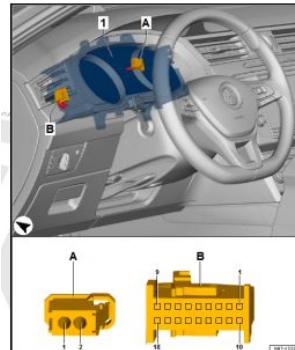
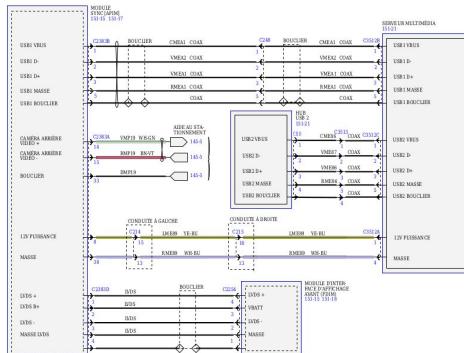
- ▶ **Scrapyard**
 - + Could check/test on-site if the ECU is working
 - + Guarantee to have access to the connectors
 - Could be difficult to find a specific model
 - Dismantling the car by yourself requires adequate tools and some time
- ▶ **Internet**
 - + Large range of ECUs available
 - Sometime you may receive a broken ECU...
 - Connectors are often missing

We do recommend finding **website that list other part for the same vehicle**, to avoid any enlistment issues

Moreover, spending a few more bucks on an ECU with its connector will save you time

Recommended bench tools

- ▶ **Lab voltage regulator:** you may need to power over 12V some ECU (approx. 14V when a vehicle is running), w/ peak current of 6/8A for some units
- ▶ **Wago connectors:** easily interconnect bus, power lines...
- ▶ **Dupont headers:** useful when you don't have the ECU's connector
- ▶ **120 ohms resistors:** complete missing termination on CAN bus

Four ECUs will be used to create a test-bench for this training:

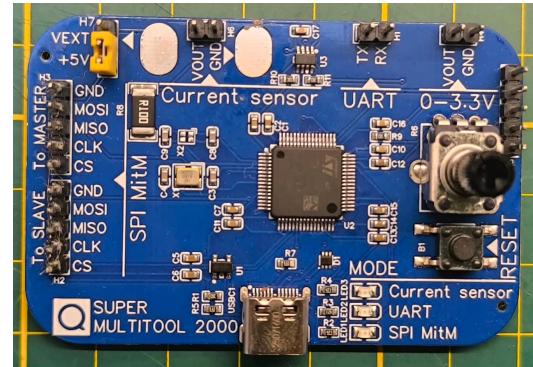
- ▶ **Instrument Cluster (IC):** base ECU to get a visual display of the state of the bench
- ▶ **Body Control Module (BCM) & a gateway (GW):** sends wake-up frames, controls main input/outputs (BCM), filters and routes CAN messages between the different CAN buses (GW)
- ▶ **In-Vehicle Infotainment unit (IVI):** multimedia unit which can be paired with smartphone for sending/receiving calls or broadcasting music
- ▶ **Telematic Control Unit (TCU):** handles Internet connectivity and emergency calls

Getting technical information

- ▶ Look for technical documentation, to **identify ECU** (type, location), **available networks** and how the OBD-II port is wired
- ▶ Mechanic forums are good, but you'll get only a few schematics
- ▶ Every manufacturer has a website dedicated to **mechanic workshop**, but access needs subscription (could be hourly access). You will find exact **diagram**, ECU **pinout**, and sometimes you can download **firmware updates**
- ▶ Try to find CAN database (.dbc), like on comma.ai's GitHub: <https://github.com/commaai/opendbc>

List of manufacturers' technical data

Audi/VW	https://erwin.audi.com/ & https://erwin.vw.com/	Mercedes	http://www.startekinfo.com/
BMW	http://www.bmwtechinfo.com/	Mini	http://www.minitechinfo.com/
Citroen	http://public.servicebox.peugeot.com/pages/index.jsp	Mitsubishi	http://www.mitsubishitechinfo.com/
Fiat	https://www.technicalinformation.fiat.com/	Nissan	https://www.nissan-techinfo.com/home.aspx
Ford	https://www.etis.ford.com/	Peugeot	http://public.servicebox.peugeot.com/
Honda	https://techinfo.honda.com/rjanisis/logon.aspx	Porsche	https://techinfo2.porsche.com/
Hyundai	http://www.hyundaitechinfo.com/	Renault	https://newdialogys.renault.com/
Jeep	http://www.techauthority.com/	Saab	http://epsiportal.com/Site/SAAB
Kia	https://kiatechinfo.snapon.com/default.aspx	Smart	http://www.smarttekinfo.com/SmartTek/
Land Rover	http://www.landrovertechinfo.com/	Tesla	https://service.teslamotors.com/
Lexus	https://techinfo.lexus.com/	Toyota	http://techinfo.toyota.com/
Mazda	https://www.mazdaserviceinfo.com/	Volvo	http://www.volvotechinfo.com/

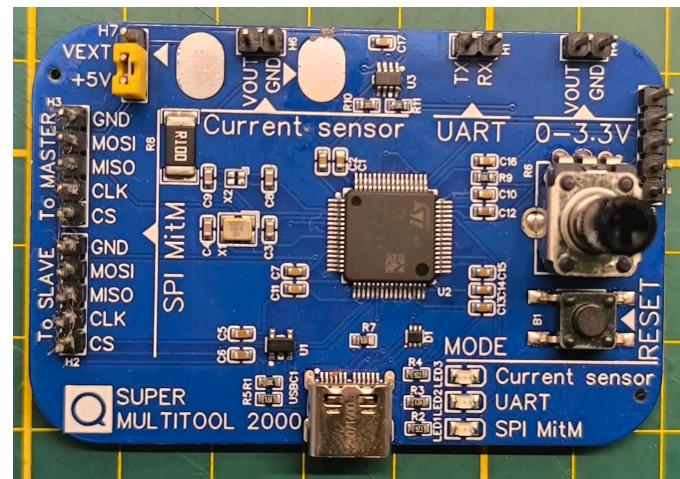

Goals

- ▶ For this lab, you'll study wiring documentation, coming from or inspired by different manufacturers technical data
- ▶ Complete challenges **Test bench - Documentation**

Instrument Cluster

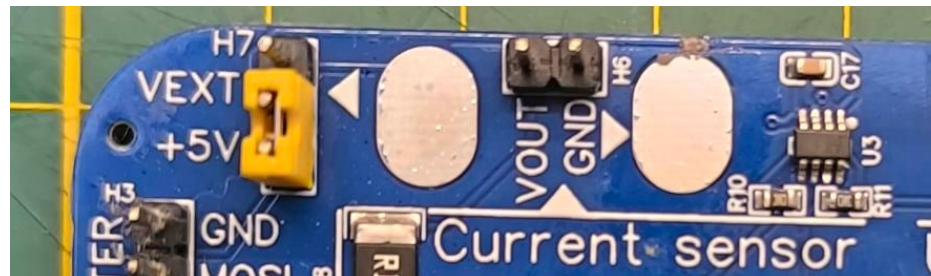
- ▶ The **Instrument Cluster** will be the first ECU we will work with
- ▶ Having a display, it is really simple to work with and get an idea of its **state**
- ▶ We will power it using the **Super Multitool 2000** current sensor pins
- ▶ Before wiring it, perform all the required challenges to get a visual confirmation of the +5V and GND pins, to avoid any short circuit that could damage the device

Goals


- ▶ Complete challenges “**Reference**” to “**Powering**” in the **Test bench - Instrument Cluster** category
- ▶ Pay attention on the **VOUT** and **GND** pins when connecting to the **Super Multitool 2000**

- ▶ ECUs are designed to be **power saving**, to avoid draining the car's battery
- ▶ You may need to find a **wake-up frame**
 - ▶ could be **any activity** on the CAN bus
 - ▶ or a **specific CAN frame**
- ▶ Some ECUs require a **12V input when ignition is on**, look for pin "wake signal", "ign/ignition" or "terminal 15/KL15"
- ▶ Wake-up frames are usually sent by the **Body Control Module**
- ▶ Content of the wake-up frame varies depending on the **ignition state**

Finding the wake-up frames


- ▶ **Capture** the CAN traffic of a working car and **replay** it
- ▶ Beware, sending data from **non-enrolled ECUs** may trigger some **anti-theft protection**
- ▶ Try every Arbitration ID **incrementally**, sending **8 bytes long** message starting from “00 00 00 00 00 00 00 00” to “FF FF FF FFF FF FF FF FF” and monitor the **current consumption** of your lab generator
- ▶ Having a lab generator with Ethernet/USB connectivity is a plus to automatise this search
- ▶ Otherwise, you can use a microcontroller and a current sensor to do so, like the **Super Multitool 2000**

The Super Multitool 2000

- ▶ To monitor the power consumption of an ECU, you can use the **Super Multitool 2000**
- ▶ It's based on a **STM32F4** and a current sensor **INA219**
- ▶ You can send commands to the multitool over its serial interface
- ▶ Jumper allow choosing the **power source: VEXT** when using a lab power generator, or **+5V** from the USB port.
- ▶ The device under test needs to be powered using **VOUT** and **GND** pins

The Super Multitool 2000 - current sensor commands

- ▶ Sending “**m**” (measure) through the UART over USB to compute the average current consumption of the device under test
- ▶ It samples 40 times the current consumption with an interval of 10ms
- ▶ Once the measurement is done, a threshold is computed
- ▶ To arm the current trigger, send “**a**” (arm). The **Super Multitool 2000** will continuously read the current on the **INA219** and send character “**!**” if the threshold is reached
- ▶ This mode can be cancelled by sending “**e**” (exit) command

The Super Multitool 2000 - current sensor commands


```
user@user: ~$ screen /dev/ttyACM0
```

```
h
```

```
Supported commands:
```

```
- [h]elp
```

```
- [e]xit current mode
```

```
==== Current sensor ====
```

```
- [m]easure
```

```
- [a]rm
```

```
[... redacted for readability ...]
```

```
m
```

```
Average current: 6 mA, Max current: 6 mA, Threshold: 9 mA
```

```
a
```

```
Current detection armed, threshold: 9 mA
```

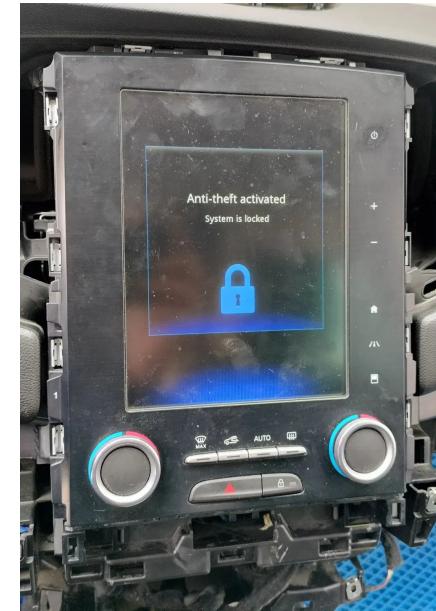
```
!Current increase detected: 10 mA (Threshold: 9 mA)
```

Goals

- ▶ Using the **Super Multitool 2000**, you'll use the current sensor to find the wake-up frame
- ▶ Complete challenges “**Wake-up frames**” in **Test bench - Instrument Cluster**
- ▶ When the wake-up frame is received, the current consumption increase occurs within a few milliseconds, it is recommended to try 3 to 4 times each Arbitration ID
- ▶ If you are not comfortable to use serial interface with Python, a base script is accessible through the hints

Once the pin discovery is performed and the ECU is working, it is a good practice to:

- ▶ **Identify Arbitration ID sent:** to establish a CAN database
- ▶ **Find out UDS identifiers resistance:** use main UDS Services to find TX/RX arbitration ID
- ▶ **List supported UDS Services:** could be helpful to monitor ECU state, find forgotten developer options or help during reverse engineering phases



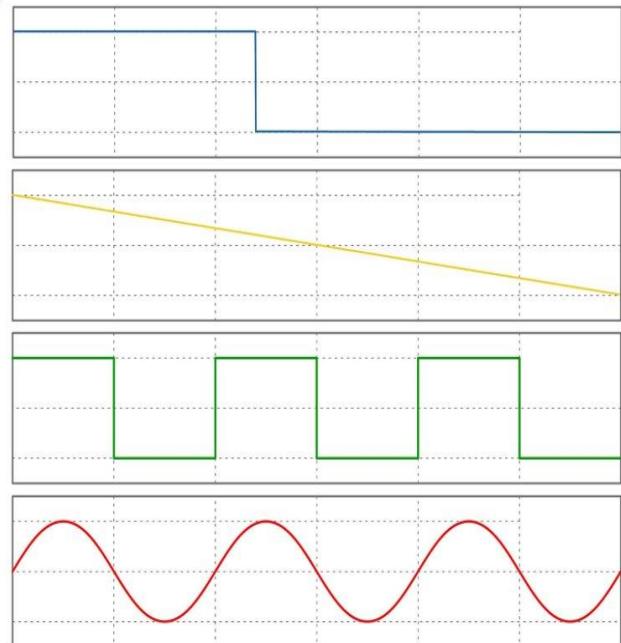
Goals

- ▶ Now the **Instrument Cluster** is started, identify the Arbitration ID used for the CAN messages sent by the IC
- ▶ Build a scanner to find the **Arbitration ID** used for **UDS requests**
- ▶ Complete the challenge **UDS TX/RX ID** from **Test bench - Instrument Cluster**

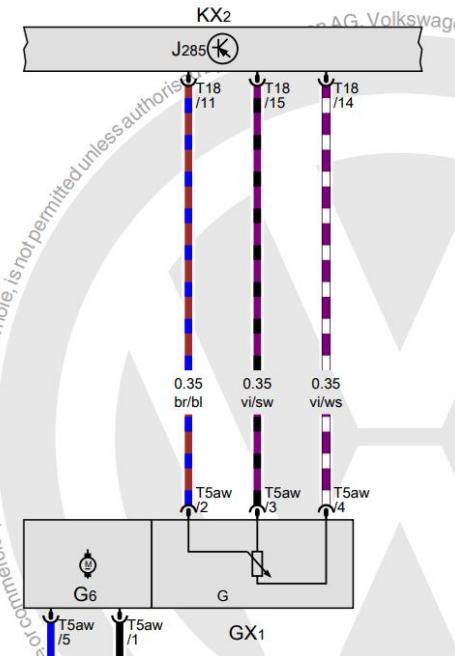
Anti-theft protection

- ▶ Some ECUs implements an **anti-theft** detection
- ▶ If triggered, the ECU could be **disabled** or **work partially**
- ▶ It could be triggered by an **invalid message** or a **missing CAN message**
- ▶ It is based on a shared “**secret**” by other ECU being part of the enrollment
- ▶ On older **IVI**, it uses a **PIN** system

Goals


- ▶ Try to bypass the anti-theft protection. To do so, you'll first read the **VIN** of the vehicle, using **UDS** request **ReadDataByIdentifier**, then analyse a capture from a working vehicle
- ▶ Complete the challenges **VIN** and **Bypassing anti-theft protection** from **Test bench - Instrument Cluster**

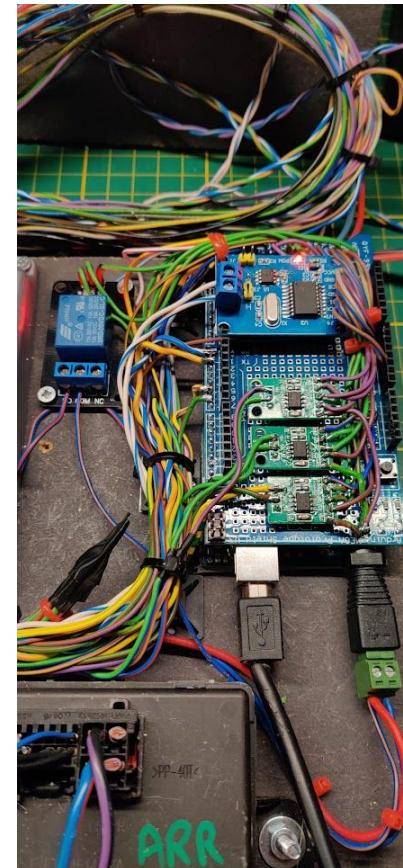
Emulating sensors



Sensors have 4 types of output:

- ▶ **Relay to ground (or +12V)**
Input read 1 if connected to GND (or +12V)
- ▶ **Variable resistance**
Mostly 5V signal going through 1-5K potentiometer
- ▶ **Square signal**
Also 5V signal
- ▶ **Wave signal**
More complex to emulate, need additional hardware

Instrument Cluster sensor diagram

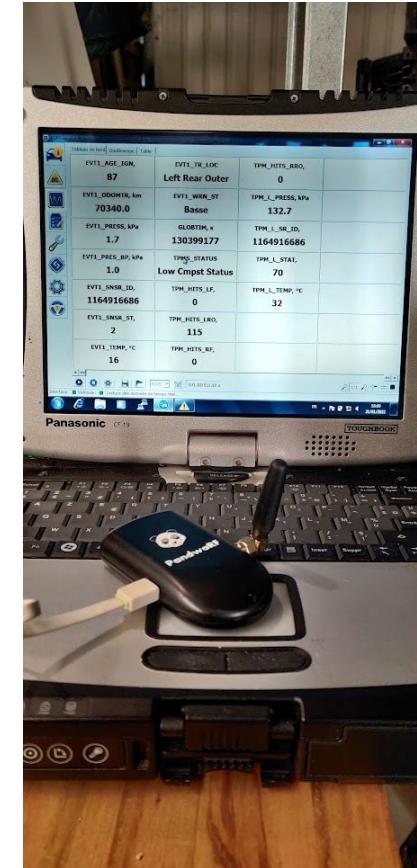


Fuel delivery unit, Fuel pump control unit, Dash panel insert

- G Fuel gauge sender
- GX1 Fuel delivery unit
- G6 Fuel system pressurisation pump
- J285 Control unit in dash panel insert
- J538 Fuel pump control unit
- KX2 Dash panel insert
- T5aw 5-pin connector, black
- T5ax 5-pin connector, black
- T18 18-pin connector, black
- 480 Earth connection, in fuel tank wiring harness
- 720 Earth point on right B-pillar

Example of sensors emulation

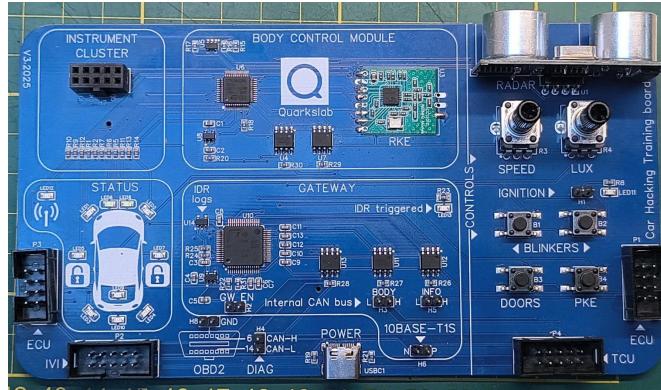
- ▶ Switching pins mode (input/output) is used to have **signal to ground** control
- ▶ **12V output** is handled by a relay
- ▶ **Digital potentiometer** emulates temperature and fuel level sensors
- ▶ An **Arduino** board adapts values through its **UART** interface


Not all sensors are wired

- ▶ Direct **Tire Pressure Monitoring System (TPMS)** use radio-frequency
- ▶ Each sensor **sends periodically** data to the BCM
- ▶ Signal are crafted with the [Rfcat](#) library and supported devices based on a **CC1101 transceiver**

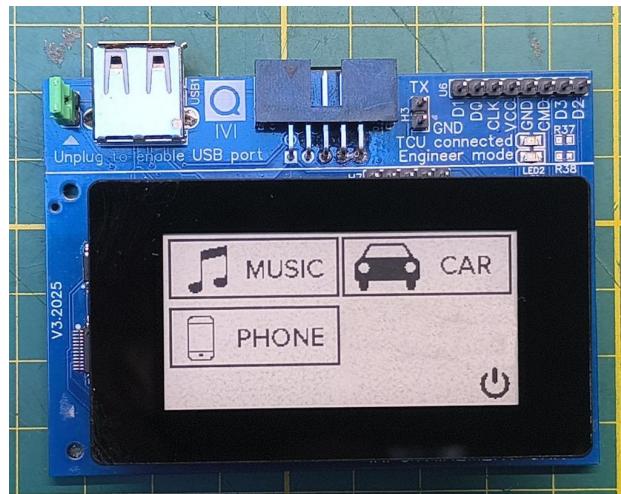
Diagnostic tools

- ▶ Having access to official or 3rd party **diagnostic tools** is a time saver for this tasks
- ▶ It allows to **requests read value** from the ECU and evaluate **valid inputs**
- ▶ Some tools allow to modify **ECU configuration**, using under the hood UDS Service Write Data By Identifier, which can be useful to revert crash mode for example


Goals

- ▶ Using the **Super Multitool 2000**, you will emulate a basic sensor on the pin 6, tied to the **Lux reader**
- ▶ Complete the remaining **Test bench - Instrument Cluster** challenges

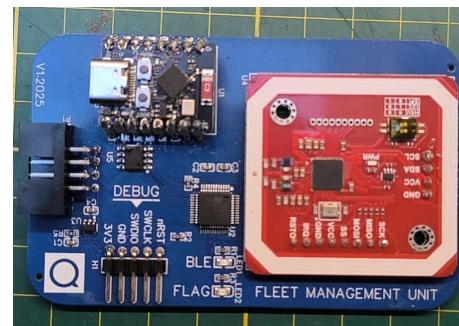
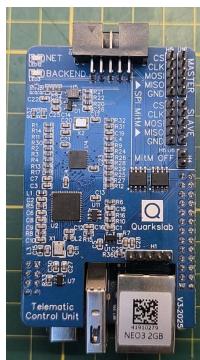
Body Control Module


- ▶ Next ECU will be the **Body Control Module**, which will handle the wake-up frames and provide some inputs/outputs
- ▶ It will be powered through its **USB-C plug**
- ▶ On the **Body Control Module** PCB, there is also a **Gateway** and an **OBD-II** plug for diagnosis purposes (not used in this training)
- ▶ The PCB provides pins to connect to the two **CAN buses (BODY and INFO)** and the **10BASE-T1S** network

Goals

- ▶ For the **Body Control Module (BCM)** we will focus on its **CAN messages** and also find the Arbitration ID to send **UDS** requests
- ▶ Connect the **Instrument Cluster** to the **Body Control Module** and power it using a USB-C cable
- ▶ Complete challenges **Test bench - Body Control Module**

- ▶ Using a 10-pin ribbon cable, connect the **In-Vehicle Infotainment (IVI)**
- ▶ Its **USB plug** can be used when **removing the jumper**, which disables its 10BASE-T1S connectivity
- ▶ The **ePaper screen** has a **touch capability**, to open various menus



Goals

- ▶ We will focus on the Automotive Ethernet connectivity of the **IVI**
- ▶ Connect the **IVI** to one of the two **10-pins IDC connector**
- ▶ Complete challenges **Test bench - Infotainment**

Telematic Control Module & Fleet Management Unit

- ▶ The last two ECUs to add to our bench are the **Telematic Control Unit** and the **Fleet Management Unit**
- ▶ The **Telematic Control Unit** will handles connectivity to an emulated **LTE network** using ZMQ protocol
- ▶ The **Fleet Management Unit** has **RFID** and **Bluetooth Low Energy** capabilities to allow car sharing

Goals

- ▶ Assemble all the parts of your test bench
- ▶ Wire the **IVI** and its **display**
- ▶ Connect the **USB port** and check if it works by inserting a **USB drive**
- ▶ Complete the **Test bench - Telematic** challenges

Thank you

Contact information:

Email: contact@quarkslab.com

Phone: +33 1 58 30 81 51

Website: www.quarkslab.com

@quarkslab