
Telematic Control Unit (TCU) hacking

Connected Car Hacking

Overview

Telematic Control Unit is the key element in a car’s connectivity, offering:

▸ Backend connectivity
▸ OEM monitoring
▸ Mobile application interaction (door lock/unlock, positioning, charging status, HVAC…)
▸ Firmware updates

▸ Emergency/Assistance call (xCall)

▸ Internet connectivity
▸ On-board navigation
▸ 3rd application connectivity

Illustration: [link]

2

https://blog.bytebeam.io/blog/the-role-of-iot-in-connected-vehicle-technology/

Hardware analysis

Key elements of a TCU are:

▸ Dedicated vehicle microcontroller: or VuC (Vehicle uC), which interacts with the on-board
networks like CAN and handles diagnostic requests

▸ 3GPP embedded modem (SoC): allows Internet/backend connectivity and usually runs an
operating system handling car’s connected features (remote unlocking, updates…)

▸ eSIM: embedded SIM card use to connect to the cellular network of programmed carrier

The VUC and the SoC communicate through an on-board communication, which could be SPI, UART,
USB3…, look for level shifter as VuC and SoC often use different voltage levels (3.3V/1.8V)

TCU offers data connectivity to other ECUs, using Automotive Ethernet or acting like an USB to
Ethernet adapter

3

Hardware analysis

4

TCU #A TCU #B

Modem

SoC

￼

eSIM

eSIM

VuC
VuC

5

TCU Firmware
extraction

Embedded firmwares

▸ To fully assess a TCU, at least 2 firmwares need to be analysed:
▸ VuC with its embedded firmware for in-vehicle communications
▸ SoC running an operating system and a baseband

▸ However, connected features will be managed by the SoC,

▸ Those features are usually binaries or Java applications running on a framework provided by the
SoC manufacturer

▸ SoC file system can be retrieved through firmware updates or by dumping its Flash memory

▸ Firmware updates are often encrypted

▸ Dumping SoC Flash memory requires chip-off techniques, being stored on Parallel NAND Flash or
MCP (Multi Chip Package) chips (Flash + RAM)

6

SoC hardware analysis

7

Qualcomm MDM9628
Automotive grade communication chipset
ARM Cortex A7 1.2GHz
ARM Cortex M3 100MHz

Micron JZ233
MCP memory
4Gbit NAND Flash
2Gbit LDRR2 RAM

Illustration: [link]

https://www.lcsc.com/datasheet/lcsc_datasheet_2410310936_Micron-Tech-MT29AZ5A3CHHTB-18AAT-109_C21052277.pdf

Firmware storage - NAND Flash extraction

High storage capacity NAND Flash uses a Parallel interface to reach high bandwidth, requiring to remove the
chip and using a memory programmer.

Common format are TSOP48 and BGA like. Some integrated chip combines Flash memory and RAM requiring
some microsoldering if no sockets are available off the shelf.

8

Firmware storage - NAND Flash - Parallel interface

For high-speed data transfer, increasing the clock speed of previous protocols has limits. Using multiple
data lines allows reaching such rates and are commonly used by NAND memories and or SRAM chips,
like the following example:

Command Latch Enable (CLE), Address Latch Enable (ALE), Write Enable (WE) and Read Enable (RE) and
Chip Enable (/CE) control bus allow controlling the behaviour of the memory while data and address are
read/written through the 8/16 corresponding bus [DQ0-15] and [A0-A15].

Illustration: [link]

9

http://embeddedsystemforu.blogspot.com/2012/04/serial-vs-parallel-flash-memory-and-its.html

Firmware storage - NAND Flash layout

NAND Flash memory are commonly seen into SoC.

Data is written in page and erased in block. Once a bit in Flash is set to 0, it cannot be set back to 1 unless an
erase operation is performed, i.e. writing a whole block to 1.

By its physical nature, NAND Flash memory is not 100% reliable, error when storing bits may occur.

To mitigate this issue, such memory have spare area to store Error Correction Codes (ECC) and more available
memory space to provide defined storage capacity over the life cycle of the chip.

10

Illustration: [link] &
 [link]

https://flashdba.com/2014/06/20/understanding-flash-blocks-pages-and-program-erases/
https://www.micron.com/

Firmware storage - NAND Flash wear levelling data

When dumping a NAND Flash, trying to analyse its content with binwalk or unblob will return error.

It is necessary to first identify bad block marker (BBM), error correction code (ECC) and potential padding
that could be used.

▸ Bad block marker is a byte present at a specific interval,
specifying if the block is valid or corrupted

▸ ECC will allow using algorithm like BCH or Reed Solomon
to determine and correct invalid bits

▸ Padding could be used depending on the ECC size

Using the ECC to check and correct the content of the block and
removing BBM, ECC and padding will allow getting the proper
content of the NAND Flash

11

B
LO

C
K

BBM

ECC

Padding

Firmware storage - BCH

▸ Bose-Chaudhuri-Hocquenghem (BCH) is a cyclic error-correcting code

▸ ECC It detects error in a set of symbols and allows bits correction depending on the codeword length
(a 13-bytes BCH corrects up to 6-bit errors)

12

from bchlib import BCH

bch = BCH(8, m=13) # BCH(BCC_bits, ECC_Polynomial)
data = b'...' # data to analyse
bch_ecc = b'...' # 13 bytes BCH code word

Check if errors are present
error_qty = bch.decode(data, bch_ecc)

Correct errors
data = bytearray(data)
bch.correct(data, ecc)

NAND specific file systems: UBIFS

Unsorted Block Images file system, known as UBIFS is a file system developed for unmanaged Flash
memory to spread erase and write operation across all the blocks/pages.

It uses Logical Erase Blocks (LEB) that are dynamically mapped to Physical Erase Blocks (PEB). Data are
stored into volumes, that consists of one or several LEB.

To do so, it adds at least an Erase Counter header at the beginning of the block and a Volume IDentifier
header, recognizable with the magic bytes UBI# and UBI!

13

Illustration: [link]

https://www.sciencedirect.com/science/article/pii/S2666281723002081

NAND specific file systems: SquashFS

SquashFS is a compressed and read-only file system. It compresses files, inodes and directories and
supports block sizes from 4KB up to 1MB. It is well suited for embedded devices.

Magic bytes sqsh (0x73717368) is used at the beginning of a SquashFS superblock.

Modification done to files (configuration, binaries) stored on a SquashFS using shell access will not be
saved. To handle persistent data, such device will have other storage file system, like UBIFS on its Flash
memory.

14

Illustration: [link]

https://www.researchgate.net/figure/Layout-of-a-SquashFS-superblock_fig7_364126164

Operating system overview

Core logic of a Telematic Control Unit is usually performed by the System-on-Chip

It will run a Linux based distribution with an API provided by the SOC manufacturer to interact with mobile
networks

15

Illustration: [link]

https://source.sierrawireless.com/resources/legato/newlegato/#sthash.bmW1OLAk.dpbs

Lab 1 - TCU NAND memory analysis

Goals

▸ For this lab, you’ll practice NAND Flash memory analysis

▸ From the documentation, you’ll look for the NAND Flash parameters

▸ And find wear levelling data that need to be removed/processed to dump the stored content

▸ Complete challenges Telematic - NAND Flash

1616

17

Connecting TCU to a
cellular test network

Assessing cellular devices

▸ Analysing communication of cellular devices is less trivial than Wi-Fi or Bluetooth

▸ It requires specific equipment to emulate cellular network

▸ Device need to be modified to connect to the simulated network as mutual authentication is used in
3G+ networks

▸ As using radio frequency is regulated, it is recommended to use a Faraday cage to avoid emitting on
restricted frequencies

18

Illustration: [link]

https://www.mattblaze.org/blog/faraday/

2G network overview

▸ In 2G the Mobile Station (MS) connects to the BTS radio antenna

▸ The Base Station Controller exchanges with the Core Network to authenticate the subscriber, get
data service, send/receive text messages and calls

▸ The Home Location Register holds details about
subscribers

▸ The Authorization Center is responsible for
authentication and ciphering of data

19

2G network limitation

▸ In 2G, the authentication of a subscriber is performed by the HLR only

▸ The mobile network choose the encryption algorithm that will be used, based on a list of supported
one sent by the Mobile Station

▸ If the algorithm A/0 is used, no encryption will be performed and data is sent in clear text

▸ Exploiting those flaws can be useful if the device under test could not be altered, to swap the SIM
card for example

20

Emulating 2G BTS: YateBTS

▸ YateBTS is an open-source emulating 2G network using compatible SDR devices

▸ It provides to the user equipment GPRS data connectivity

▸ Voice calls could be made

▸ Using additional script, SMS and binary SMS could be generated from the host computer to the user
equipment

21

Illustration: [link]

https://github.com/phil-eqtech/YateBTS_smssend
https://nickvsnetworking.com/configuring-yatebts-for-software-defined-gsm-gprs/

LTE network overview

▸ Long Term Evolution (LTE) network improve mobile communication by offering full IP solution,
replacing of circuit-switched architecture

▸ It offers higher data rate, reduce delay and improve responsiveness for Internet services

▸ A User Equipment connects to an eNodeB antenna that routes data to the Evolved Packet Core

▸ It uses mutual authentication

22

Emulating LTE network: srsRAN

▸ To emulate LTE and 5G network, the open-source srsRAN project is useful

▸ It could emulate eNodeB, but also user equipment (UE)

▸ srsEPC binary act as an Evolved Packet Core

▸ srsENB emulates the eNodeB using compatible SDR device

▸ It can also work with Open5GS to have a working 5G SA network

23

Illustration: [link]

https://www.researchgate.net/figure/G-NSA-architecture-in-srsRAN-based-implementation_fig4_365186361

Combining Open5GS EPC and srsRAN

▸ srsRAN does not support IPv6 PDN

▸ A device requiring such IP type could drop the connection

▸ srsRAN could be configured to use Open5GS EPC

▸ The following online resource explains how to configure srsRAN and Open5GS for this purpose

24

https://github.com/s5uishida/open5gs_epc_srsran_sample_config

▸ Mobility Management Entity (MME): manages user mobility, authentication and bearer session
establishment

▸ Serving Gateway (SGW): routes and forwards user data packets

▸ Home Subscriber Server (HSS): central database containing user subscription information and
authentication credentials

▸ Packet Data Network Gateway (PGW): provides
connectivity between user equipment and external
packet data networks, like Internet

▸ Policy and Charging Rules Function (PCRF):
policy rules for quality of services and handles real-time
charging control

▸ IP Multimedia Subsystem (IMS): enables delivery of multimedia
services over IP, supporting voice and video communications

LTE evolved packet core

25

Illustration: [link]

https://www.iplook.com/products/epc-sgw-pgw

26

Preparing device
under test

eSIM

▸ To connect to the cellular network, the device will need a SIM card

▸ Old physical SIM cards are now replaced by eSIM integrated circuit

▸ eSim share pins with standard SIM

▸ By desoldering the eSIM or cutting traces, it could be replaced by a
test SIM

27

Illustration: [link]

https://gorgias.me/2017/12/10/eSIM%E5%AD%A6%E4%B9%A0%E7%AC%94%E8%AE%B0/

eSIM - identification

▸ eSIM chips are easily identifiable

▸ The ICCID, Integrated Circuit Card Identifier, is a unique identifier of the eSIM is written on the
package

▸ ICCID is 19-22 digits number

28

USIM card: MMC, MNC, Ki & OPC

▸ USIM hosts several data, including an authentication key Ki and the operator code

▸ Operator code could be derived (OPC) or in clear (OP)

▸ Each USIM has a unique 15-digit ID, the IMSI

▸ The Mobile Country Code (MCC - 3 digits) and the Mobile Network Code (MNC - 2 digits) of the
operator issuing the USIM is also registered

▸ MNC are defined for each country, like 208 for France, 310 for the US or 001 for test networks

▸ Some SIM cards, like Sysmocom ones, are easily programmable to be used with YateBTS and
srsRAN

29

Illustration: [link]

https://sysmocom.de/products/sim/sysmousim/index.html

Network authentication

▸ When connecting to the network of the operator who issued the USIM, authentication will be made
with the Home Subscriber Server (HSS)

▸ The HSS knows the Ki and the OPC associated with the IMSI of the USIM

▸ Ki and OPC will be used to perform mutual authentication between the USIM and the HSS

▸ The Ki will be derived multiple times to cipher communications

30

Illustration: [link] &
 [link]

https://nickvsnetworking.com/hss-usim-authentication-in-lte-nr-4g-5g/
https://www.sciencedirect.com/science/article/abs/pii/S092054891630071X

Programming a Sysmocom SIM card

▸ Using a PCSC compatible reader and pySim, it is possible to read some content of a SIM card

▸ To activate the pcsc daemon on Linux, and check if reader is recognized:

▸ To read data of the SIM card:

▸ To modify IMSI using the ICCID and the admin code ADM1 of the card:

▸ To read the OPC and Ki, sysmo-isim-tool will be required:

31

$ pcscd
$ pcsc_scan
Using reader plug'n play mechanism
Scanning present readers...
0: Alcor Link AK9563 00 00
[...]

$ python3 pySim-read.py -p0

$ python3 pySim-prog.py -p0 -a [ADM1] -s [ICCID] -i [IMEI]

$ sysmo-isim-tool.sja5.py --adm1 [ADM1] -ok

https://github.com/osmocom/pysim
https://github.com/sysmocom/sysmo-usim-tool

Configuring the device

▸ To be able to get a PDN context and access network, an APN must be set in the device

▸ For TCU, this parameter could often be written using a UDS Write Data By Identifier request

▸ If changing the value is not possible, retrieve the stored value using UDS Read Data By Identifier
and change it in:
▸ srsRAN only: /etc/srsran/epc.conf
▸ srsRAN and Open5GS: /etc/open5gs/smf.yaml and /etc/open5gs/smf.yaml

32

Lab 1 - Using Sysmocom SIM card

Goals

▸ For this lab, you’ll practice the basic command to prepare a programmable SIM card and your test
mobile network setup

▸ Complete challenge Telematic - SIM card

3333

34

Emulating 2G network

YateBTS - introduction

▸ Once installed, YateBTS can be run using command

▸ To route data packet, ipv4 forwarding and iptables rules must be set

▸ It exposes a telnet shell using port 5038 where some base commands could be sent

35

$ sudo yate -vv

$ sudo sysctl -w net.ipv4.ip_forward=1
$ sudo iptables -A POSTROUTING -t nat -s 192.168.99.0/24 ! -d 192.168.99.0/24 -j MASQUERADE
$ sudo iptables -A POSTROUTING -t nat -s 192.168.99.0/24 ! -d 192.168.99.0/24 -j MASQUERADE

$ telnet 0 5038
Trying 0.0.0.0...
Connected to 0.
Escape character is '^]'.
YATE 6.2.1-devel1 r (http://YATE.null.ro) ready on user.
nipc list accepted
IMSI MSISDN
--------------- -------------
001010000071399 | 8820071399

YateBTS - configuration

▸ Individual subscribers can be registered in /usr/local/etc/yate/subscribers.conf

▸ Using regex value, subscribers authentication can be bypassed to accept corresponding IMSI

36

$ cat /usr/local/etc/yate/subscribers.conf
[general]
country_code=882
smsc=8822003

If set, regexp will bypass IMSI verification
regexp=^001

[001019901001390]
msisdn=88221390
iccid=8988299000010013900
imsi_type=3G
active=on
op=54C927F80684484858F74D8CD6E53A35
opc=on
ki=*
imsi=00101990100139

YateBTS - commands

▸ Basic commands to simulate a call or send SMS can be sent using the Telnet access

37

$ telnet 0 5038

YATE 6.2.1-devel1 r (http://YATE.null.ro) ready on user.
nipc list accepted
IMSI MSISDN
--------------- -------------
001010000071399 | 8820071399

smsend 8820071399 12345 Hello from 12345 !
message successfully sent.

callgen set called=8820071399
Set 'called' to '8820071399'

callgen set caller=888

Set 'caller' to '888'
callgen single

YateBTS - advanced behavior

▸ The Network-in-a-PC version of YateBTS supports Javascript scripting, to perform automated or
advanced task

▸ Editing nipc.js or welcome.js in /usr/local/share/yate/ allows for instance to automate action on
calls or message sent by the device under test

38

// Automate action on called number
if (message.called == "888") {
 Engine.debug(Engine.DebugInfo, "Got call to 888");
 Channel.callTo("wave/record/-",{"maxlen":10000});
}

// or caller number
if (message.caller == "8820071399") {
 Engine.debug(Engine.DebugInfo, "Got call from MSISDN 8820071399");
 Channel.callTo("wave/record/-",{"maxlen":10000});
}

YateBTS - monitoring

▸ In /usr/local/etc/yate/ybts.conf tapping could be set to monitor GSM/GPRS traffic in Wireshark on
port 4729

▸ To find IMSI/IMEI that connects to the BTS, use filter: gsm_a.dtap.msg_mm_type

▸ To find SMS sent/received: gsm_a.dtap.protocol_discriminator == 9

▸ For calls: gsm_a.dtap.protocol_discriminator == 3

39

Lab 2 - Analysing YateBTS data

Goals

▸ Analysing a network capture from a GSM/GRPS tap of YateBTS, can you retrieve key information ?

▸ Complete challenges Telematic - YateBTS

4040

41

Emulating LTE network

Training setup

▸ For this training, we will use ZMQ protocol to exchange packets between the Telematic Control Unit
and your Virtual Machine

▸ Doing so, no Software Defined Radio device are required, avoiding issues related to radio traffic

▸ In the Telematic Control Unit, srsRAN has been compiled with libpcsclite-dev installed

▸ This allows to execute srsUE to emulate an User Equipment on the Telematic Control Unit, with the
PCSC support to get data (IMSI, Ki, OPC) from the provided SIM card

▸ If you want to reproduce this setup, look at srsRAN documentation:
https://docs.srsran.com/projects/4g/en/next/app_notes/source/zeromq/source/

▸ Open5GS is also installed, script srsenb_zmq_start.sh will manage the correct initialization between
Evolved Packet Core used: srsRAN or Open5GS

▸ The Telematic Control Unit will emulate an User Equipement when a SIM card is detected and IP
connection to the VM through IPv4 address 192.168.111.2/24 active

42

https://docs.srsran.com/projects/4g/en/latest/general/source/1_installation.html
https://docs.srsran.com/projects/4g/en/next/app_notes/source/zeromq/source/

Training setup

43

srsRAN: configuring SIM data

▸ To accept the assessed device, srsRAN need to know the IMSI, Ki and OPC of our SIM card

▸ By default, srsRAN use the /etc/srsran/user_db.csv file

▸ If OPC is used in the USIM, auth type will be mil (milenage)

▸ For USIM with only OP set, auth type will be xor and the OP/OPC field need to be set at op

44

$ cat /etc/srsran/user_db.csv
[...]
card_name, auth, imsi, ki, op_type, OP/OPC, AMF, SQL, QCI, IP Allow
sysmo_97,mil,001010000071397,7ce2…..f97ef8ce97,opc,ac5e562dd0c64……3428203,8000,000000001635,7,dynamic
sysmo_98,mil,001010000071398,0b32…..12dc1b78f1,opc,e73c8a8e7a8c…….e234dee,8000,000000001696,7,dynamic

srsRAN: other parameters

▸ In /etc/srsran, other configuration files are available

▸ MCC and MNC could be set in /etc/srsran/enb.conf

▸ If changed, they must also be configured in /etc/srsran/epc.conf

▸ /etc/srsran/epc.conf also sets the APN (internet) and the default IP address range given in the PDN
context (172.16.0.1)

▸ srsRAN does not support IPv6

45

srsRAN: starting emulated network

▸ eNodeB and EPC are independant in srsRAN and must be started individually

▸ For testing, we will use the srsRAN virtual radio feature, emulating the UE and eNodeB using ZMQ
https://docs.srsran.com/projects/4g/en/next/app_notes/source/zeromq/source/

sudo srsenb --rf.device_name=zmq
--rf.device_args="fail_on_disconnect=true,tx_port=tcp://*:4000,rx_port=tcp://tcu_ip:4001,id=enb,base_srate=23.04e6"

46

$ sudo srsepc
--- Software Radio Systems EPC ---
[...]
Reading configuration file /etc/srsran/epc.conf...
HSS Initialized.
MME S11 Initialized
MME GTP-C Initialized
MME Initialized. MCC: 0xf001, MNC: 0xff01
SPGW GTP-U Initialized.
SPGW S11 Initialized.
SP-GW Initialized.
S1 Setup Request - eNB Name: srsenb01, eNB id: 0x19b
[...]
Sending S1 Setup Response

$ sudo srsenb [...]
--- Software Radio Systems EPC ---
[...]
Supported RF device list: bladeRF zmq file
CHx base_srate=23.04e6
[...]
==== eNodeB started ===
Current sample rate is 11.52 MHz with a base rate of
23.04 MHz (x2 decimation)
Current sample rate is 11.52 MHz with a base rate of
23.04 MHz (x2 decimation)
Setting frequency: DL=2680.0 Mhz, UL=2560.0 MHz
for cc_idx=0 nof_prb=50

https://docs.srsran.com/projects/4g/en/next/app_notes/source/zeromq/source/

Lab 3 - LTE network over ZMQ

Goals

▸ You’ll configure srsRAN to accept User Equipment using the provided SIM Card

▸ Complete challenges Telematic - srsRAN

4747

open5GS: configuring SIM data

▸ In Open5GS, subscribers data are stored in a mongoDB database

▸ To add a new subscriber, use tool open5gs-dbctl

▸ By default, Open5GS will register APN internet, if a custom APN is required use:

▸ To remove a subscriber:

48

$ open5gs-dbctl add IMSI Ki OPC

$ open5gs-dbctl add IMSI Ki OPC APN

$ open5gs-dbctl remove IMSI

open5GS: usage

▸ Open5GS runs as several system services

▸ When starting srsENB, you can check the proper S1 connection to the Open5GS EPC:

▸ To monitor User Equipment association and IP assignment, use the following log files:

49

$ sudo tail /var/log/open5gs/mme.log
09/16 16:04:32.909: [mme] INFO: eNB-S1 accepted [127.0.1.1]:51780 in s1_path module (../src/mme/s1ap-sctp.c:114)
09/16 16:04:32.909: [mme] INFO: eNB-S1 accepted[127.0.1.1] in master_sm module (../src/mme/mme-sm.c:108)
09/16 16:04:32.909: [mme] INFO: [Added] Number of eNBs is now 1 (../src/mme/mme-context.c:3035)

$ tail /var/log/open5gs/upf.log
[upf] INFO: [Added] Number of UPF-Sessions is now 1 (../src/upf/context.c:212)
09/16 16:34:48.536: [upf] INFO: UE F-SEID[UP:0xf21 CP:0x500]
APN[internet] PDN-Type[3] IPv4[10.45.0.3] IPv6[2001:db8:cafe:2::3] (../src/upf/context.c:498)

$ tail /var/log/open5gs/mme.log
09/16 16:24:58.815: [mme] INFO: [Added] Number of MME-Sessions is now 1 (../src/mme/mme-context.c:5166)
09/16 16:24:58.849: [esm] ERROR: Invalid APN[internet2] (../src/mme/esm-handler.c:275)
09/16 16:24:58.850: [mme] INFO: Removed Session: UE IMSI:[001010000071397] APN:[Unknown]

open5GS: configuring PDN

▸ To set custom IP pool and APN, you’ll need to modify /etc/open5gs/smf.yaml and
/etc/open5gs/upf.yaml

▸ Do not forget to add supported networks in /etc/systemd/network/99-open5gs.network

50

session:
- subnet: 192.168.11.0/24
 gateway: 192.168.11.1
 dnn: internet
 dnn: secret

- subnet: 2001:db8:cafe::/48
 gateway: 2001:db8:cafe::1

 dnn: internet
- subnet: 10.45.0.0/16

 gateway: 10.45.0.1
 dnn: secret2

Lab 3 - Using Open5GS EPC

Goals

▸ You’ll now use Open5GS Evolved Packet Core

▸ Complete challenge Telematic - Open5GS

5151

52

Intercepting and
downgrading

communications

Intercepting and redirecting traffic

▸ TCU commonly use private APN, having access to servers not exposed on Internet

▸ Setting a local DNS server will allow redirecting requests to various domains on our machine

▸ /etc/srsran/epc.conf need to be modified to set the correct rogue DNS IP, 172.16.0.1 by default

▸ For Open5GS, /etc/open5gs/smf.yaml need to be edited

53

TCU

srsRAN

dnsmasq

1. establish LTE PDN context

Auditor’s PC

2. DNS request

3. DNS response

Intercepting and redirecting traffic - training setup

▸ For this training, the DNS hijacking will be performed using DNSmasq

▸ It is already installed and configured on your VM for this purpose

▸ To add a domain to intercept, edit /etc/dnsmasq.conf

▸ To apply changes, DNSmasq needs to be rebooted

54

$ cat /etc/dnsmasq.conf
[...]
Add domains which you want to force to an IP address here.
address=/hijack.me/172.16.0.1

$ sudo systemctl restart dnsmasq

Lab 4 - DNS MitM

Goals

▸ You’ll edit DNSmasq to redirect Telematic Control Unit requests to your machine

▸ Complete challenges Telematic - DNSmasq

5555

Downgrading MQTT TLS traffic

▸ MQTT is often used in TCU, with ciphered communication using TLS on port 8883

▸ Server and clients each have:
▸ a private key (*.key)
▸ a signed certificate from a Certificate Authority (*.crt)
▸ the certificate of the Certificate Authority (ca.crt)

▸ Those materials may not be alterable in the device, but could be reuse to create a rogue server if stored
in clear

56

Illustration: [link]

https://www.rs-online.com/designspark/mqtt-part-6-security

Extracting certificates from binaries

▸ Some binaries could store certificates for asymmetric encryption

▸ Standard storage format is ASN.1 DER (Distinguished Encoding Rules)

▸ If stored encoded in base64, search for “MII”

▸ Otherwise, look for pattern 0x30 0x82 xx yy where xx yy will be the length of data to analyse

▸ Using Python cryptography module, check if it returns a valid certificate:

57

from cryptography import x509
data = open(binary.bin','rb').read()
pos = data.find(b'\x30\x82') # Add iteration to find more cert
cert_len = int.from_bytes(data[pos+2:pos+4],'big')
try:
 decoded_cert = x509.load_der_x509_certificate(data[pos:pos+cert_len+4])
 print(f"\nFound X509 at {pos:#010x}:")
 print(f"Issuer: {decoded_cert.issuer}, subject: {decoded_cert.subject}")
 print(f"OID: {decoded_cert.signature_algorithm_oid}")
except Exception as e:
 pass

Certificates - explore using OpenSSL

▸ Raw certificate in ASN.1 DER format could be analysed using OpenSSL

▸ Get more details for X509 certificates:

58

$ openssl asn1parse --inform DER -in undefined_cert.bin
 0:d=0 hl=4 l=1213 cons: SEQUENCE
 4:d=1 hl=2 l= 1 prim: INTEGER :00
 7:d=1 hl=2 l= 13 cons: SEQUENCE
 9:d=2 hl=2 l= 9 prim: OBJECT :rsaEncryption
 20:d=2 hl=2 l= 0 prim: NULL
 22:d=1 hl=4 l=1191 prim: OCTET STRING [HEX DUMP]: xxxxxx

$ openssl x509 -noout -text -in client.crt
Certificate:
 Data:
 Version: 1 (0x0)
 Serial Number:
 2d:32:43:2f:1d:d0:d1:c1:97:96:12:f0:22:69:a1:16:52:08:cf:31
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: C = AU, ST = Some-State, O = TrustedCertAuth
 [...]

Lab 5 - Setting a rogue MQTT server

Goals

▸ The TCU tries to connect to a MQTT server

▸ Analyse the frames sent using Wireshark and try to redirect requests to the hosted Mosquitto
MQTT server

▸ Check if you can extract certificates and key from the binary which is provided in the ~/Lab folder

▸ Configure the MQTT server so the TLS communication between the binary and the server could be
established and capture the flag sent

▸ The Mosquitto MQTT server configuration is available in /etc/mosquitto with logs in
/var/log/mosquitto and can be restarted using command

5959

$ sudo systemctl restart mosquitto

Email:

Thank you
Contact information:

contact@quarkslab.com

@quarkslab

+33 1 58 30 81 51 Phone:

quarkslab.comWebsite:

contact@quarkslab.com

www.quarkslab.com

60

mailto:contact@quarkslab.com
https://quarkslab.com/

