Connected Car Hacking

In-Vehicle Infotainment (IVI) unit hacking

Quarkslab

In-Vehicle Infotainment (IVI) unit is the ECU in charge of most of the multimedia and
customer-oriented features inside the vehicle

Primary purpose is to enhance the driving experience by offering a wide range of features:
» Navigation
» Entertainment
» Connected applications
» Interaction with driver/passenger
smartphones

This ECU has the widest range of attack
surfaces, being a target of choice

https://www.einfochips.com/blog/everything-you-need-to-know-about-in-vehicle-infotainment-system/

Hardware analysis

Key elements of an IVI are:

>

Dedicated vehicle microcontroller: or VuC (Vehicle uC), which interacts with the on-board
networks like CAN and handles diagnostic requests

Main System on Chip (SoC): runs the operating system (OS)

External Flash memory and RAM: for the SoC

Digital Signal Processor (DSP): process audio signals

External connectivity chip: for wireless connectivity and positioning (GNSS, Wi-Fi, Bluetooth, ...)

Some VI have integrated display, others are separated in 2 ECUs, connected with LVDS cable
(Low Voltage Differential Signal)

Hardware analysis

izl

NNy ey O 0

S

bk bk g
£ vexe ar©

IVI Firmware
extraction

Quarkslab

Embedded firmwares

» To fully assess an IVI at least 2 firmwares need to be analysed:
» VuC with its embedded firmware for in-vehicle communications
» SoC running an operating system, which manages wireless/USB connectivity and system
updates

» Main operating system used in VI are:
» Android
» QNX
» Automotive Grade Linux

» The operating system is commonly store in on an eMMC memory chip

QNX F-

AUTOMITIVE
GRADE

Firmware storage - eMMC

To store an Operating System, eMMC chip are often used.

eMMC have a dedicated controller that handles the inner NAND Flash memory and performs wear levelling =
and error correction code of this memory. =

7 Host a eMMC 0
) CLK /eMMC Controller :
. 5 CMD N ECE AN
MMC Driver . NAND Flash
DAT * Wear Leveling
< * NAND Whitening
J \

\ 4 A

The various pin of an eMMC are:

CMD - command line

CLK - clock line

DAT[O-7] - data lines

VCC - input voltage for the flash storage (1.8V and/or 3.3V)
VCCQ - input voltage for the flash controller (1.8V and/or 3.3V)

vV V. v v v

https://riverloopsecurity.com/blog/2020/03/hw-101-emmc/

Firmware storage - eMMC extraction

eMMC use the same protocol as SD-card, and could operate in 1-bit, 4-bit or 8-bit mode.

Content of an eMMC could be extracted by removing the chip from the PCB using chip-off technique and a
memory programmetr.

However, by finding pins CMD, CLK and DAT[0-4], it is possible to solder them onto an SD adapter and read and
write it using an SD-card reader. This technique is useful to keep the device working and inject/extract data and
binaries. To avoid conflict on the CLK line, the main chip of the device need to be halted or unpowered.

e 10 [O] 0 ﬂf’*w 1§ Kond Burnoss
5

| b “' qeIsHenTy

Secure Digital Input Output

Secure Digital Input Output, or SDIO, is synchronous protocol enabling high-speed data transfer with
peripheral devices.

It requires a command (CMD), a clock (CLK) line and several data lines (DATX) to supports 8-bit, 4-bit or =
1-bit data bus. -
-]

It provides faster speeds than SPI and 12C, making it ideal for high bandwidth applications.

This protocol is used by SD card and eMMC memory chip.

Figure 2-1 Signal connection to two 4-bit SDIO cards

MsByte-1MsByte

DATO ‘ 0

X‘bobo

CLK >
¢ CMD > c
A SD I/O Card
DAT[3:0] DAW‘ o x ‘ b7 | b7 ‘b7 b7 CRC |1 ‘
4
DATS[0 X ‘ b6 b6 ‘bG b6 CRC 1 ‘
SD Host DATs‘ 0 x ‘ b5 bs ‘bS bs CRC | 1 ‘
CLK > oata [0| x [ba/ ba [ba[ba] crc [1]
o CMD » DAT3‘ 0 x ‘bg b3 ‘bs b3 CRC |1 ‘
N SD I/O Card
DAT[3:0] DATZ‘ o x| b2 b2 EEEE ‘
DATL l 0 X j bl b1 ‘bl b1 CRC |1 J
‘bo bo CRC 1 ‘

Block Length

https://yannik520.github.io/sdio.html
https://www.prodigytechno.com/emmc-protocol

Firmware storage - eMMC pins identification

To find the required pins to perform the extraction using a SD-card reader, there are several techniques:

>

Removing the eMMC on a second device, then find vias, debug pins or components to solder to
Search for array of pull-up/pull-down resistors around the eMMC, which are good candidates for DAT pins

Align pictures of the two sides of PCB then overlay the pins of a spare eMMC over the real one to visually
found candidate traces

. o BN
T TI T IET
Y Tl IR
T T IS T

:.::O:?odoo soe
*® - O e

135791113 70 .
o cuesh & cnssiep 72

10

Firmware storage - eMMC pins identification

To overlay and align images, we will use GIMP and its unified transform tool

» 1. Open one of the picture of the PCB and add the second one in a new layer
» 2. Using guides, mark a 1st reference (an easily identifiable vias for example) on the bottom layer
» 3. Align the upper layer on this first mark

Firmware storage - eMMC pins identification

» 4. On the bottom image, select a second reference point
» 5. Open the Unified Transform Tool
» 6. Check Pivot > Lock, Pivot > Snap and From Pivot > Scale

, selection or path

Shift+R

Constrain (Shift)

12

Firmware storage - eMMC pins identification

» 7. Click on the upper image to activate the Unified Transform Tool
» 8. Move the pivot point (crosshair) on the first reference point
» 6. Scale and rotate the image to match the second reference point

Move the
square to scale

Use the cursor

on the outside

of the region to
rotate

¢ :”: B o%ooC;:(;é%?@‘m@;l
@@ ®®
o0© ©OOCOCOO

oy sScuse
a“@ﬂ!ﬂaﬁé FTafas ogat @ ' 1 u,bun—ow=4 >
1 NP clss

TPI|93-v \157 - v

=1 U" *
bab °%MQM-’7:{;\F(§I _:;::o-_‘;«:«-.ms-.' f
‘_'mumwé‘

Lab 1 - Locating eMMC pins

» For this lab, you’ll practice visual identification of the PCB of an IVI to find components or test
points that could be used to extract the eMMC memory

» Complete challenges eMMC identification to eMMC pin identification 2 in Infotainement -
firmware extraction

14

Firmware storage - eMMC pins identification - initialisation

» Itis also possible to find candidates using a logic analyser
» In1-byte mode, only CMD, CLK and DATO are required

» During initialisation, DATO is the only data line active

» Commands sent through the CMD line use the following structure:

=

O | T |CMD # Argument

CREC

1—4+—1—+4+——6—1 32

15

https://riverloopsecurity.com/blog/2020/03/hw-101-emmc/

Lab 2 - Identifying eMMC CMD/CLK/DATO

» Alogic analyser capture was performed on test points around an eMMC during boot

» Complete challenge Signal analysis from Infotainment - firmware extraction

16

Firmware storage - eMMC extraction - disabling auto-mount

» Using a SD reader, it is possible to mount the eMMC on your computer

» Beware of the voltage of the eMMC, check the datasheet, some only work on 1.8V, requiring special =
adapter

» Also, it is recommended to disable auto-mount, to avoid writing metadata on the eMMC, which can
trigger secure boot protection

» On Debian, type:

$ sudo systemctl stop udisks2
$ sudo systemctl disable udisks2

17

https://shop.exploitee.rs/shop/p/low-voltage-emmc-adapterhttps://shop.exploitee.rs/shop/p/low-voltage-emmc-adapter

Firmware storage - eMMC extraction - dump

» Use dmesg command to find the path to the eMMC (/dev/sdX, /dev/mmcblkX)

» The last number is the partition, omitting it will dump the whole content of the eMMC

$ sudo dmesg

[18989.012121] scsi 0:0:0:0: Direct-Access Multiple Card Reader 1.00 PQ: 0 ANSI: 0
[18989.012421] sd 0:0:0:0: Attached scsi generic sg0 type 0

[18989.232914] sd 0:0:0:0: [sda] 15204352 512-byte logical blocks: (7.78 GB/7.25 GiB)
[18989.233345] sd 0:0:0:0: [sda] Write Protect is off

[18989.233348] sd 0:0:0:0: [sda] Mode Sense: 03 00 00 00

[18989.233728] sd 0:0:0:0: [sda] No Caching mode page found

[18989.233733] sd 0:0:0:0: [sda] Assuming drive cache: write through

[18989.236785] sda: sda1 sda2 sda3

[18989.237038] sd 0:0:0:0: [sda] Attached SCSI removable disk

[18989.525477] sda: sda1 sda2 sda3

$ sudo dd if=/dev/sda of=./dump.bin bs=512 status=progress

Firmware storage - eMMC extraction - partial

» Using fdisk, you can list the various partitions to select a target one to speed up the dumping process

$ sudo fdisk -I

Device Boot Start End Sectors Size Id Type
/dev/sdb1 8192 532479 524288 256M c W95 FAT32 (LBA)
/dev/sdb2 532480 6846463 6313984 3G 83 Linux

/dev/sdb3 6846464 7434239 587776 287M 83 Linux

/dev/sdb4 7434240 31115263 23681024 11,3G 83 Linux

$ sudo dd if=/dev/sda of=./dump.bin bs=512 status=progress seek=6846464 count=587776

Lab 3 - Dumping eMMC

» Using the provided SD card adapter, dump the content of the eMMC

» Complete remaining Infotainment - firmware extraction challenges

20

Bypassing secure boot

Quarkslab

21

Infotainment main OS

4

Infotainment unit commonly runs Linux based distribution, like:

» QNX
Automotive Grade Linux

>

>

Amphitheatre Pkwy

® Google Buildin...

>
Android Automotive OS
For this module, we will focus on Android Automotive as it has some specifics

® Séggle Mount...

91 - Jetpack Gla...
Now in Android

Charleston
G%argle
A
2:14

=

22

https://developer.android.com/training/cars

Firmware alteration

» Having read/write access to the eMMC, we can modify its content to add/patch binaries or modify
configuration files

» Correctly secured IVI will implement a secure boot to ensure the authenticity of the OS
» But...it has to be done in a proper way

» Not all partition could be signed, as at least one partition must be alterable to store persistent/user
data

» What if this partition is executable or store binaries/configuration used by the system ?

» Analysing logs may give some hints on how the secure boot is implemented

23

Standard secure boot process

s < =
App 1 =3
App 2
&
Operating N
System(s App N

Crypto Key

Second Stage
Boot Loader

Signature ¢—
Crypto Key \

; RRA4RR ;~~—M,M '

First Stage [
Boot Loader

Signature

Al Crypto Key ¢

LLLLLEELLELLEELELS

24

https://theembeddedkit.io/blog/enable-secure-boot-in-embedded-systems/

Lab 4 - Bypassing vulnerable secure boot

» Can you bypass the secure boot of a 10 years old infotainment ?

» Complete challenges Infotainment - bypassing secure boot

25

Quarkslab

Android 101

26

Android Automotive specifics

» In Android Automotive, applications are car-optimized for safety in road usafe

» It handles interaction with some part of the vehicle, including:
» HVAC

Instrument cluster display (navigation, music)

Battery charging

Locking system

Telematic Control Unit

vV vV v VY

» It can support some base Android services, known as Google Android Automotive Services (GAS),
like the Play Store, Maps...

» If it offers different features, it is based on the Android Open Source Project (AOSP)

27

Android Automotive - Per-Application Network Selection

» Per-Application Network Selection is an API that is specific to Android Automotive

» It allows network management to route data traffic of OEM-allowed application to OEM network =

=

» It ensure critical applications could be connected using an OEM-paid data plan and other
application to use user-paid data plan

» It expands NetworkCapabilities by adding NET_CAPABILITY_OEM_PAID and
NET_CAPABILITY_OEM_PRIVATE

OEM Control Agp
Telemetry
PANS Sudsystem OFM Paid
GAS Mags. - < =
Assistant —./
Play Store

Third Party Media App Customer Paid

e —

28

https://source.android.com/docs/automotive/connectivity

Android key concepts

» Android runs applications in a sandboxed environment (per-application UID)

» It has permission-based access control

» Applications can communicate through Inter-Process Communication (IPC)

» Core packages, applications and services are signed using keys, granting specific privileges
» The key that signed core packages is known as the platform key

» ADB is a tool allowing shell access to an Android device, that is normally disabled in production,
also known as user mode

29

In Android, Applications and Services are provided in as APK, which are ZIP archive

Key element of an APK is its AndroidManifest.xml, which defines application behavior,
components, permissions...

JADX allows to unpack APK and analysis Java/Kotlin code

An APK could also integrates native library which are C/C++ compiled code developed for specific
uses

By default, applications are restricted, unless proper permissions are set (Internet access,
read/write access to shared folder...)

Basic APK have no privilege, unless signed by the platform key, being then considered as system
application

30

Android Manifest

» The Android Manifest is an XML file describing the behavior of an APK and its permissions
» Some permissions could be dangerous from a security point of view

» |t also declares the BroadcastReceivers, for Intents that could be use to interact with the
application

31

Android Manifest - example

<?xml version="1.0" encoding="utf-8"?>
<manifest xmins:android="http://schemas.android.com/apk/res/android" package="com.example.app">
<!-- Permissions -->
<uses-permission android:name="android.permission.INTERNET" />
<application
android:allowBackup="true"
android:label="ExampleApp"
android:usesCleartextTraffic="true"
android:theme="@style/Theme.App">
<I-- Receiver for system BOOT event -->
<receiver android:name=".BootReceiver"
android:enabled="true"
android:exported="true">
<intent-filter>
<action android:name="android.intent.action.BOOT_COMPLETED" />
</intent-filter>
<Ireceiver>
<I-- Receiver for a custom Intent -->
<receiver android:name=".CustomReceiver"
android:enabled="true"
android:exported="true">
<intent-filter>
<action android:name="com.example.CUSTOM_ACTION" />
</intent-filter>
<Ireceiver>
</application>
</manifest>

32

http://schemas.android.com/apk/res/android

Android’s quick win: Intents

» For Inter-Process Communication application could use Intents

» Incorrectly secured Intents could allows non-privileged application to execute command or alter
the behavior of the target application

» Exposed BroadcastReceivers can be found by looking at the various AndroidManifest.xml

Sending Intent:
Intent sendintent = new Intent();
sendIntent.setAction(Intent. ACTION_SEND);
sendIntent.putExtra(Intent. EXTRA_TEXT, textMessage);
sendintent.setType("text/plain");
startActivity(sendintent);

Receiving Intent:
MyBroadcastReceiver myBroadcastReceiver = new MyBroadcastReceiver();
IntentFilter filter = new IntentFilter("com.example.snippets. ACTION_UPDATE_DATA");
ContextCompat.registerReceiver(context, myBroadcastReceiver, filter, receiverFlags);

33

Android’s quick win: Services & AIDL

» Also Inter-Process Communication, Services can have AIDL interfaces

4

They will expose a set of functions that can be executed through ADB access or by third-party APK

» As the AIDL file will not be available in the compiled application, look for and switch-case

AIDL example:
/I IRemoteService.aidl
package com.example.android;

[** Example service interface */
interface IRemoteService {

/** Request the process ID of this service. */
int getPid();

/** Demonstrates some basic types that you can use as parameters */
int basicTypes(int anint, byteArray[] aByteArray);

34

Android’s quick win: Services & AIDL

Compiled result:
package com.example.android,;

public interface IRemoteService extends linterface {
public static class Default implements IRemoteService {
@Override
public boolean onTransact(int i, Parcel parcel, Parcel parcel2, int i2) throws RemoteException {
switch (i) {
case 1:
int getPid_ = getPid();
parcel2.writeNoException();
parcel2.writelnt(getPid_);
return true;
case 2:
int i1 = parcel.readInt();
byte[] bArr = parcel.createByteArray();
int basicTypes_ = basicTypes(i1, bArr);
parcel2.writeNoException();

parcel2.writelnt(basicTypes_); 35

Android’s quick win: getRuntime

» From the System class, command getRuntime executes provided command on the system
» A privileged application will have privileged rights for execution

» Searching for unsecure call to GetRuntime is always recommended

Process process = Runtime.getRuntime().exec("cp myFile /var/data/tmp/%s", target_name);

36

Getting deeper

» If you’re new to Android and want to get deeper in, | recommend looking at Hextree.io courses,
Android ones are free !

Bluetooth Reverse
Englneering Baslcs

Androld Bug Bounty

ANDROID [

Your First Androld
App

Research Device & Reverse Englneering
Emulator Setup Androld Apps

Network Interception Dynamic Broadcast Recelvers Androld Services
Instrumentation

37

https://www.hextree.io/

Quarkslab

Engineer mode

38

Engineer mode

» Engineer mode are often present in VI, allowing after-sales analysis/debugging of units

» It could also be used to trigger/modify specific features of the 1VI

5
| CE3
*MM2014 Ver: 7.0.24.166 ' g
» To activate this mode, it may be required to: SR i

» Perform specific pattern on the touch screen R e e
» Insert an USB key with a specific file/folder
» Use UDS command

*S/W PartRef: 281155430R
* H/W PartNum: 285/95418R

, B
,' 11050
Engineering Made

Allin One Version
—

Version

\ | USBCopy

Diagnosis
\ariant Coding

https://n-cars.net/forums/threads/radio-engineer-mode-android.2406/page-4
https://vicone.com/blog/how-a-vehicles-smart-cockpit-can-get-hacked-via-a-malicious-update-file

Finding how to activate engineer mode

For common IVI, method to activate engineer mode can be found on various forums/websites

>

» On Android-based IVI, search for ClickListener or onLongClickListener usage and Intent which =
could be named with *engineer* or *debug*

» On some devices, using an UDS WriteDataByldentifier request could activate such mode

40

https://www.youtube.com/watch?v=R9WlrkBioi8

Lab 5 - Accessing Engineer Menu

» Complete challenges Infotainment - Engineer Mode to access to the Engineer Menu

41

Quarkslab

Analysing USB
interface

42

Scanning supported devices

» IVI may support various USB devices, scanning them may give us hints on some capabilities

(keyboard, mass storage, usb to ethernet support, ...) =
» Well known device for this task is the Facedancer21 board and umap2, which are old but reliable =
tools =,

» Using the Facedancer Python library, it is simple to emulate USB devices to assess IVI with
compatible hardware, like the ones below

» We recommend using board like Cynthion or the Hydradancer, which offers higher data rate and
flexibility than the Facedancer21 and the GreatFET

GreatFET One

43

https://goodfet.sourceforge.net/hardware/facedancer21/
https://github.com/nccgroup/umap2
https://github.com/greatscottgadgets/facedancer
https://greatscottgadgets.com/cynthion/
https://blog.quarkslab.com/hydradancer-faster-usb-emulation-for-facedancer.html
https://blog.quarkslab.com/hydradancer-faster-usb-emulation-for-facedancer.html
https://vicone.com/blog/how-a-vehicles-smart-cockpit-can-get-hacked-via-a-malicious-update-file

Scanning supported devices

» umap2 from NCC group is the go-to tool to scan supported USB devices using a Facedancer21

» Connect the HOST port of the Facedancer21 to your computer and the TARGET one to the device
under test

» To simply scan a USB host, we can use the following command:

cUd cU 10 dUd Y,
[INFO] [SmartcardDewce] Response:
260345006d0075006c006100740065006400200053006d00610072007400630061007200

6400
[INFO] have been waiting long enough (over 6 secs.), disconnect

[INFO][Max342xPhy] Disconnected device SmartcardDevice

[INFO][Max342xPhy] Disconnect called when already disconnected
[ALWAYS]

[ALWAYS] Found 2 supported device(s):

[ALWAYS] 1. audio

[ALWAYS] 2. cdc_acm

Emulating devices

» With the Facedancer 3.0 library, it is possible to emulate a USB device

» Working with this feature could help to scan for supported characteristic, find non-filtered Vendor
ID and Product ID ...

» Forinstance, we can emulate a mass storage device and display live content written in clusters to
follow dump logs without having to remove a USB stick between various attempts of an attack

» Facedancer’s Github repository holds several examples to jump into USB emulation

45

https://github.com/greatscottgadgets/facedancer/tree/main/examples

Emulating devices - examples

from facedancer import *
from facedancer import main

@use_inner_classes_automatically
class HackRF(USBDevice): """ Device that emulates a HackRF enough to appear in ““hackrf_info™.
Show up as a HackRF.
product_string : str = "HackRF One (Emulated)"
manufacturer_string : str = "Great Scott Gadgets"
vendor _id :int = 0x1d50
product_id :int = 0x6089

class DefaultConfiguration(USBConfiguration):
class Defaultinterface(USBInterface):
pass

@vendor_request_handler(number=14, direction=USBDirection.IN)
@to_device
def handle_control_request_14(self, request):

request.reply([2])

@vendor_request_handler(number=15, direction=USBDirection.IN)

@to_device

def handle_get version_request(self, request):
request.reply(b"Sekret Facedancer Version")

main(HackRF)

Lab 6 - Exploiting USB port

> You’ll analyse supported USB devices using umap2
» And emulate basic USB device using Facedancer

» Complete challenges Infotainment - USB

47

Quarkslab

Extracting Personally
Identifiable
Information

48

IVI: a personally identifiable information goldmine

» |VIs store lot of data, including:
» Phonebook address

Navigation history

Paired phone information

Logs of call sent/received

=

vV v v v

e
A S, S

» Modern IVI are connected to internal/external camera, pictures may be retrieved

» Ifthere is some compliance with the GDPR, logs may still contain privacy related data

49

https://www.linkedin.com/pulse/automotive-industry-privacy-pii-ronen-lago/

IVI: a personally identifiable information goldmine

WoONOU L WN -

BEGIN:
X-TSD-
X-TSD-
X-TSD-

PROFILE

SLOT:4
MACADDRESS : 90b123d2c60a
NAME:Galaxy A51

Database Structure | Browse Data | Edit Pragmas = Exect |* ECH Btatase cel L i:gg:;gg':rgglz)ER»LASTNAME»COMMA—FIRSTNAME:
Table{Fsys08 8 % % B @ »ffiter.| Modesinay -5 =BEBBE .8 X-TSD-PRIVATEPROFILE:
& = o 5 END:PROFILE
bi-ns obj id obj_size | obj type 00f0 00 00 10 00 03 01 00 75 00 O1 00 00 01 06 00 00 | Ueonnns “ 18 BEGIN:VCARD
32 0 Filter Filt Filter Filter 0100 00 d4 fb 8e 9a 7d fe 11 00 00 00 47 65 6f 72 67 |] 3 S Georg 11 VERSION:3.0
0110 65 e2 80 99 73 20 69 50 68 6f 6e 65 0a 00 00 00 | e...s iPhone.... 12 FN:PAU
Lo 45232 o G 0 0120 41 70 70 6c 65 20 49 6e 63 2e 0a 00 00 00 69 50 | Apple Inc..... iP 13 X-TSD-ORIGIN:ME
2 45232 9 9 2 0130 68 6T 6e 65 31 32 2c 31 1lc 60 60 00 56 65 72 73 | honel2,1....Vers 14 N:;JOHN;;;;
0140 69 6f 6e 20 31 36 2e 33 2e 31 20 28 42 75 69 6¢c | ion 16.3.1 (Buil 15 TEL; TYPE=CELL:+32453271723
3 | 45232 2 4 2 0150 64 20 32 30 44 36 37 29 10 00 00 00 a9 4a bd 72 | d 20D67)..... Jar 16 END:VCARD
a4 |as232 3 10 3 VW BT 2279 0160 b9 7f f1 5e 60 4f 85 5a b7 66 05 d4 06 01 3f 15 | ...~'0.Z.f....2. 17 BEGIN:VCARD
0170 10 60 04 00 00 00 07 00 00 60 01 00 00 00 02 01 |c.on.. 18 VERSION:3.0
5 45232 13 4 0 0180 02 GO GO GO 06 O1 ©8 OO 6O 6O 63 01 10 60 00 00 |cvvvvuunnn v 19 FN:John, Doe
c acna3A 1n a PN 20 X-TSD-ORIGIN:ME
21 N:;John;;;;
22 TEL;TYPE=CELL:5749
23 END: VCARD
14:56:00.878 [Warn] [iMX6.0rganizer.Callstack]' CallStack::addCall. Reached the maximal nr of calls. Call details, normalNumer: 4 origin: @ ent
14:56:00.408 [Info] [J5e.Radio.AUDIO] IMX Input DMA: iMaxAnnl = 0x0000
14:56:00.886 [Warn] [iMX6.0rganizer.CallStack] CallStack::addCall. Reached the maximal nr of calls. Call details, normalNumer: 4586359 origin:
14:56:00.409 [Info] [J5e.Radio.AUDIO] IMX Input DMA: iMaxAnn2 = 0x0000
14:56:00.895 [Info] [iMX6.Navi.tsd.nav.core.navlocresolver.GeoPositionResolver] resolved country: France
14:56:00.411 [Info] [J5e.Radio.AUDIO] IMX Input DMA: iMaxAnn3 = 0x0000
14:56:00.909 [Info] [iMX6.Navi.tsd.nav.core.navlocresolver.GeoPositionResolver] resolved city: Marseille
14:56:00.412 [Info] [J5e.Radio.FmSingle-ALL] @¥8[omQuali - Antenne 1|F: 103200kHz | |[PI: -2|QS: ©|QA: ©]QSmin:30|RDS:0|Seek:0E4[om
14:56:00.909 [Info] [iMX6.Navi.tsd.nav.core.navlocresolver.GeoPositionResolver] cityRefinement: Bouches-du-Rhone, Provence-Alpes-Cote d'Azur

50

Collecting personal data

» Some IVI dump logs on USB mass storage device or SD card
» A specific folder or file may be required, or an activation through the engineer menu
» Trying USB to Ethernet adapter on USB port may lead access to exposed services

» Itis common to have a USB Vendor ID or Product ID filtered for USB to Ethernet adapter, but
using an ASIX AX88772B device it can be altered

» Scanning UDS ReadDataByldentifier may also provide sensitive data

e
\ W ’
LS

=39

o

R

51

Altering Asix VID/PID

» EEPROM memory of Asix AX88772 adapter can be flashed to modify their Vendor ID and Product ID

» |t can be done using ethtool

#!/bin/bash

Original VID:PID: 0b95:7720

Product: AX88772

Manufacturer: ASIX Elec. Corp.

ETH=$(ip -o link|]awk -F'": ' '/ether.*00:6f:00/{print $2}")

if ["SETH" !=""1; then
#VID
sudo ethtool -E $ETH magic Oxdeadbeef offset 0x0048 length 0x01 value 0x95
sudo ethtool -E $ETH magic Oxdeadbeef offset 0x0049 length 0x01 value 0x0B
PID
sudo ethtool -E $ETH magic Oxdeadbeef offset 0x004A length 0x01 value 0x77
sudo ethtool -E $ETH magic Oxdeadbeef offset 0x004B length 0x01 value 0x20

sudo ethtool -e $ETH offset 0x48 length 4
fi

Altering Asix VID/PID

» EEPROM memory of Asix AX88772 adapter can be flashed to modify their Vendor ID and Product ID

» |t can be done using ethtool

#!/bin/bash

Original VID:PID: 0b95:7720

Product: AX88772

Manufacturer: ASIX Elec. Corp.

ETH=$(ip -o link|]awk -F'": ' '/ether.*00:6f:00/{print $2}")

if ["SETH" !=""1; then
#VID
sudo ethtool -E $ETH magic Oxdeadbeef offset 0x0048 length 0x01 value 0x95
sudo ethtool -E $ETH magic Oxdeadbeef offset 0x0049 length 0x01 value 0x0B
PID
sudo ethtool -E $ETH magic Oxdeadbeef offset 0x004A length 0x01 value 0x77
sudo ethtool -E $ETH magic Oxdeadbeef offset 0x004B length 0x01 value 0x20

sudo ethtool -e $ETH offset 0x48 length 4
fi

Lab 7 - Export personal data

» Exploiting Engineer Mode and USB emulation, you’ll practice on recovering Personally Identifiable
data stored on the VI

» Complete challenges Infotainment - Personally Identifiable Data

54

Quarkslab

Exploiting Bluetooth’
trust

55

Bluetooth Link Key

» In-Vehicle Infotainment supports Bluetooth BR/EDR to pair smartphone for phone calls or playing
music

» When two devices paired, they exchange their I/O capabilities to define how to establish an
encrypted connection:

Just Works

Numeric comparaison

Passkey entry

Out of Band

vV vyVvyy

» Before Bluetooth 4.1, a Link Key is derived from the Pin code exchanged
» With Bluetooth 4.1+, the Link Key is derived using elliptic curves
» Communication between the two devices are encrypted based on derived value of the Link Key

» To bond two devices, they each store the computed link key for automatic pairing
56

Bluetooth Link Key exploitation

» Knowing the Link Key and the Bluetooth address (BDADDR) of a device, an attacker can mimic it to
automatically connect to the target device

» In Linux, this information is stored in /var/lib/bluetooth/
» Atthe root level, there is one folder by BDADDR of Bluetooth adapter connected to the computer
» Each folder contains sub-folders, named also with the BDADDR of connected devices

» In the info file (if present) there will be several information, including the Link Key if devices were
bonded lroot@carhack:/var/lib/bluetooth# tree

57

Mimicking Bluetooth address

» Some adapters can be programmed to modify their BDADDR
» Cambridge Silicon Radio CSR4.0 dongle is well known, but only supports Bluetooth 4.0

» Linux Bluez provides command bdaddr to modify the Bluetooth Address of supported chips

58

Bluetooth basis: getting BDADDR and scanning

» To get the Bluetooth address of the provided Bluetooth dongle, you can use the hcitool command

» To scan Bluetooth BR/EDR advertisement frames

$ sudo hciconfig

hci0: Type: Primary Bus: USB
BD Address: 00:1A:7D:DA:71:13 ACL MTU: 679:8 SCO MTU: 48:16
DOWN

[..]

$ sudo hciconfig hci0 up

$ sudo hcitool scan

Scan ...

49:B2:CA:1A:BO:A1 (unknown)
49:B2:CA:1A:B0:A1 (unknown)

Bluetooth Link Key info file

» To allow your computer to use a known Link Key, you must in /var/lib/bluetooth find the folder with
the bdaddr of the adapter you want to use

» In this folder, create a new folder with the bdaddr of your target
» Create an empty attribute file
» Create an info file, containing at least:

$ cat info
[General]
Name=IVI
SupportedTechnologies=BR/EDR,;

[LinkKey]
Key=DF28E75F341723D2ECA4A4B905B24F42
Type=8

PINLength=0

Enabling connection

» To apply changes, bluetooth system must be restarted

» Using bluetoothctl, connection to the target device could be started by typing

$ sudo systemctl restart bluetooth

$ sudo bluetoothctl

Agent registered
[CHG] Controller AA:BB:CC:DD:EE:FF Pairable: yes
[J# connect 00:11:22:33:44:55

Lab 8 - Exploit Bluetooth Link Key

» Using the retrieved Sqlite database, you’ll find the link key of a device
» The goal is to mimic it to establish a Bluetooth connection to your IVI

» As the provided Bluetooth dongle is not supported by Bluez’s bdaddr, your dongle BDADDR wiill
be set in the IVl using UDS command

» Complete challenges Infotainment - Bluetooth Link Key

62

Quarkslab

Thank you

Contact information:

Email: contact@quarkslab.com
Phone: +33 158 30 81 51

Website: www.quarkslab.com

D
—/

@ 3 @quarkslab

63

mailto:contact@quarkslab.com
https://quarkslab.com/

