
In-Vehicle Infotainment (IVI) unit hacking

Connected Car Hacking

Overview

▸ In-Vehicle Infotainment (IVI) unit is the ECU in charge of most of the multimedia and
customer-oriented features inside the vehicle

▸ Primary purpose is to enhance the driving experience by offering a wide range of features:
▸ Navigation
▸ Entertainment
▸ Connected applications
▸ Interaction with driver/passenger

smartphones

▸ This ECU has the widest range of attack
surfaces, being a target of choice

Illustration: [link]

2

https://www.einfochips.com/blog/everything-you-need-to-know-about-in-vehicle-infotainment-system/

Hardware analysis

Key elements of an IVI are:

▸ Dedicated vehicle microcontroller: or VuC (Vehicle uC), which interacts with the on-board
networks like CAN and handles diagnostic requests

▸ Main System on Chip (SoC): runs the operating system (OS)

▸ External Flash memory and RAM: for the SoC

▸ Digital Signal Processor (DSP): process audio signals

▸ External connectivity chip: for wireless connectivity and positioning (GNSS, Wi-Fi, Bluetooth, …)

▸ Some IVI have integrated display, others are separated in 2 ECUs, connected with LVDS cable
(Low Voltage Differential Signal)

3

Hardware analysis

4

IVI #A

SoC

BT

VuC
DSP

Flash

RAM
SoC

VuC

DSP

RAM

BT

Flash

IVI #B

5

IVI Firmware
extraction

Embedded firmwares

▸ To fully assess an IVI at least 2 firmwares need to be analysed:
▸ VuC with its embedded firmware for in-vehicle communications
▸ SoC running an operating system, which manages wireless/USB connectivity and system

updates

▸ Main operating system used in IVI are:
▸ Android
▸ QNX
▸ Automotive Grade Linux

▸ The operating system is commonly store in on an eMMC memory chip

6

Firmware storage - eMMC

To store an Operating System, eMMC chip are often used.

eMMC have a dedicated controller that handles the inner NAND Flash memory and performs wear levelling
and error correction code of this memory.

The various pin of an eMMC are:
▸ CMD - command line
▸ CLK - clock line
▸ DAT[0-7] - data lines
▸ VCC - input voltage for the flash storage (1.8V and/or 3.3V)
▸ VCCQ - input voltage for the flash controller (1.8V and/or 3.3V) 7

Illustration: [link]

https://riverloopsecurity.com/blog/2020/03/hw-101-emmc/

Firmware storage - eMMC extraction

eMMC use the same protocol as SD-card, and could operate in 1-bit, 4-bit or 8-bit mode.

Content of an eMMC could be extracted by removing the chip from the PCB using chip-off technique and a
memory programmer.

However, by finding pins CMD, CLK and DAT[0-4], it is possible to solder them onto an SD adapter and read and
write it using an SD-card reader. This technique is useful to keep the device working and inject/extract data and
binaries. To avoid conflict on the CLK line, the main chip of the device need to be halted or unpowered.

8

Secure Digital Input Output

9

Secure Digital Input Output, or SDIO, is synchronous protocol enabling high-speed data transfer with
peripheral devices.

It requires a command (CMD), a clock (CLK) line and several data lines (DATx) to supports 8-bit, 4-bit or
1-bit data bus.

It provides faster speeds than SPI and I2C, making it ideal for high bandwidth applications.

This protocol is used by SD card and eMMC memory chip.

Illustration: [link] &
 [link]

9

https://yannik520.github.io/sdio.html
https://www.prodigytechno.com/emmc-protocol

Firmware storage - eMMC pins identification

To find the required pins to perform the extraction using a SD-card reader, there are several techniques:

▸ Removing the eMMC on a second device, then find vias, debug pins or components to solder to

▸ Search for array of pull-up/pull-down resistors around the eMMC, which are good candidates for DAT pins

▸ Align pictures of the two sides of PCB then overlay the pins of a spare eMMC over the real one to visually
found candidate traces

10

Firmware storage - eMMC pins identification

To overlay and align images, we will use GIMP and its unified transform tool

▸ 1. Open one of the picture of the PCB and add the second one in a new layer
▸ 2. Using guides, mark a 1st reference (an easily identifiable vias for example) on the bottom layer
▸ 3. Align the upper layer on this first mark

11

Firmware storage - eMMC pins identification

▸ 4. On the bottom image, select a second reference point
▸ 5. Open the Unified Transform Tool
▸ 6. Check Pivot > Lock, Pivot > Snap and From Pivot > Scale

12

▸ 7. Click on the upper image to activate the Unified Transform Tool
▸ 8. Move the pivot point (crosshair) on the first reference point
▸ 6. Scale and rotate the image to match the second reference point

Firmware storage - eMMC pins identification

Move the
square to scale

Use the cursor
on the outside
of the region to
rotate

13

Pivot point

Lab 1 - Locating eMMC pins

Goals

▸ For this lab, you’ll practice visual identification of the PCB of an IVI to find components or test
points that could be used to extract the eMMC memory

▸ Complete challenges eMMC identification to eMMC pin identification 2 in Infotainement -
firmware extraction

141414

Firmware storage - eMMC pins identification - initialisation

▸ It is also possible to find candidates using a logic analyser

▸ In 1-byte mode, only CMD, CLK and DAT0 are required

▸ During initialisation, DAT0 is the only data line active

▸ Commands sent through the CMD line use the following structure:

15

Illustration: [link]

https://riverloopsecurity.com/blog/2020/03/hw-101-emmc/

Lab 2 - Identifying eMMC CMD/CLK/DAT0

Goals

▸ A logic analyser capture was performed on test points around an eMMC during boot

▸ Complete challenge Signal analysis from Infotainment - firmware extraction

161616

Firmware storage - eMMC extraction - disabling auto-mount

▸ Using a SD reader, it is possible to mount the eMMC on your computer

▸ Beware of the voltage of the eMMC, check the datasheet, some only work on 1.8V, requiring special
adapter

▸ Also, it is recommended to disable auto-mount, to avoid writing metadata on the eMMC, which can
trigger secure boot protection

▸ On Debian, type:

17

$ sudo systemctl stop udisks2
$ sudo systemctl disable udisks2

Illustration: [link]

https://shop.exploitee.rs/shop/p/low-voltage-emmc-adapterhttps://shop.exploitee.rs/shop/p/low-voltage-emmc-adapter

Firmware storage - eMMC extraction - dump

▸ Use dmesg command to find the path to the eMMC (/dev/sdX, /dev/mmcblkX)

▸ The last number is the partition, omitting it will dump the whole content of the eMMC

18

$ sudo dmesg
[18989.012121] scsi 0:0:0:0: Direct-Access Multiple Card Reader 1.00 PQ: 0 ANSI: 0
[18989.012421] sd 0:0:0:0: Attached scsi generic sg0 type 0
[18989.232914] sd 0:0:0:0: [sda] 15204352 512-byte logical blocks: (7.78 GB/7.25 GiB)
[18989.233345] sd 0:0:0:0: [sda] Write Protect is off
[18989.233348] sd 0:0:0:0: [sda] Mode Sense: 03 00 00 00
[18989.233728] sd 0:0:0:0: [sda] No Caching mode page found
[18989.233733] sd 0:0:0:0: [sda] Assuming drive cache: write through
[18989.236785] sda: sda1 sda2 sda3
[18989.237038] sd 0:0:0:0: [sda] Attached SCSI removable disk
[18989.525477] sda: sda1 sda2 sda3

$ sudo dd if=/dev/sda of=./dump.bin bs=512 status=progress

3 partitions

Full dump

Firmware storage - eMMC extraction - partial

▸ Using fdisk, you can list the various partitions to select a target one to speed up the dumping process

19

$ sudo fdisk -l
Device Boot Start End Sectors Size Id Type
/dev/sdb1 8192 532479 524288 256M c W95 FAT32 (LBA)
/dev/sdb2 532480 6846463 6313984 3G 83 Linux
/dev/sdb3 6846464 7434239 587776 287M 83 Linux
/dev/sdb4 7434240 31115263 23681024 11,3G 83 Linux

$ sudo dd if=/dev/sda of=./dump.bin bs=512 status=progress seek=6846464 count=587776

Lab 3 - Dumping eMMC

Goals

▸ Using the provided SD card adapter, dump the content of the eMMC

▸ Complete remaining Infotainment - firmware extraction challenges

202020

21

Bypassing secure boot

Infotainment main OS

▸ Infotainment unit commonly runs Linux based distribution, like:
▸ QNX
▸ Automotive Grade Linux
▸ Android Automotive OS

▸ For this module, we will focus on Android Automotive as it has some specifics

22

Illustration: [link]

https://developer.android.com/training/cars

Firmware alteration

▸ Having read/write access to the eMMC, we can modify its content to add/patch binaries or modify
configuration files

▸ Correctly secured IVI will implement a secure boot to ensure the authenticity of the OS

▸ But … it has to be done in a proper way

▸ Not all partition could be signed, as at least one partition must be alterable to store persistent/user
data

▸ What if this partition is executable or store binaries/configuration used by the system ?

▸ Analysing logs may give some hints on how the secure boot is implemented

23

Standard secure boot process

24

Illustration: [link]

https://theembeddedkit.io/blog/enable-secure-boot-in-embedded-systems/

Lab 4 - Bypassing vulnerable secure boot

Goals

▸ Can you bypass the secure boot of a 10 years old infotainment ?

▸ Complete challenges Infotainment - bypassing secure boot

252525

26

Android 101

Android Automotive specifics

▸ In Android Automotive, applications are car-optimized for safety in road usafe

▸ It handles interaction with some part of the vehicle, including:
▸ HVAC
▸ Instrument cluster display (navigation, music)
▸ Battery charging
▸ Locking system
▸ Telematic Control Unit

▸ It can support some base Android services, known as Google Android Automotive Services (GAS),
like the Play Store, Maps…

▸ If it offers different features, it is based on the Android Open Source Project (AOSP)

27

Android Automotive - Per-Application Network Selection

▸ Per-Application Network Selection is an API that is specific to Android Automotive

▸ It allows network management to route data traffic of OEM-allowed application to OEM network

▸ It ensure critical applications could be connected using an OEM-paid data plan and other
application to use user-paid data plan

▸ It expands NetworkCapabilities by adding NET_CAPABILITY_OEM_PAID and
NET_CAPABILITY_OEM_PRIVATE

28

Illustration: [link]

https://source.android.com/docs/automotive/connectivity

Android key concepts

▸ Android runs applications in a sandboxed environment (per-application UID)

▸ It has permission-based access control

▸ Applications can communicate through Inter-Process Communication (IPC)

▸ Core packages, applications and services are signed using keys, granting specific privileges

▸ The key that signed core packages is known as the platform key

▸ ADB is a tool allowing shell access to an Android device, that is normally disabled in production,
also known as user mode

29

APK 101

▸ In Android, Applications and Services are provided in as APK, which are ZIP archive

▸ Key element of an APK is its AndroidManifest.xml, which defines application behavior,
components, permissions…

▸ JADX allows to unpack APK and analysis Java/Kotlin code

▸ An APK could also integrates native library which are C/C++ compiled code developed for specific
uses

▸ By default, applications are restricted, unless proper permissions are set (Internet access,
read/write access to shared folder…)

▸ Basic APK have no privilege, unless signed by the platform key, being then considered as system
application

30

Android Manifest

▸ The Android Manifest is an XML file describing the behavior of an APK and its permissions

▸ Some permissions could be dangerous from a security point of view

▸ It also declares the BroadcastReceivers, for Intents that could be use to interact with the
application

31

Android Manifest - example

32

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android" package="com.example.app">
 <!-- Permissions -->
 <uses-permission android:name="android.permission.INTERNET" />
 <application
 android:allowBackup="true"
 android:label="ExampleApp"
 android:usesCleartextTraffic="true"
 android:theme="@style/Theme.App">
 <!-- Receiver for system BOOT event -->
 <receiver android:name=".BootReceiver"
 android:enabled="true"
 android:exported="true">
 <intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED" />
 </intent-filter>
 </receiver>
 <!-- Receiver for a custom Intent -->
 <receiver android:name=".CustomReceiver"
 android:enabled="true"
 android:exported="true">
 <intent-filter>
 <action android:name="com.example.CUSTOM_ACTION" />
 </intent-filter>
 </receiver>
 </application>
</manifest>

http://schemas.android.com/apk/res/android

Android’s quick win: Intents

▸ For Inter-Process Communication application could use Intents

▸ Incorrectly secured Intents could allows non-privileged application to execute command or alter
the behavior of the target application

▸ Exposed BroadcastReceivers can be found by looking at the various AndroidManifest.xml

33

Sending Intent:
Intent sendIntent = new Intent();
sendIntent.setAction(Intent.ACTION_SEND);
sendIntent.putExtra(Intent.EXTRA_TEXT, textMessage);
sendIntent.setType("text/plain");
startActivity(sendIntent);

Receiving Intent:
MyBroadcastReceiver myBroadcastReceiver = new MyBroadcastReceiver();
IntentFilter filter = new IntentFilter("com.example.snippets.ACTION_UPDATE_DATA");
ContextCompat.registerReceiver(context, myBroadcastReceiver, filter, receiverFlags);

Android’s quick win: Services & AIDL

▸ Also Inter-Process Communication, Services can have AIDL interfaces

▸ They will expose a set of functions that can be executed through ADB access or by third-party APK

▸ As the AIDL file will not be available in the compiled application, look for and switch-case

34

AIDL example:
// IRemoteService.aidl
package com.example.android;

/** Example service interface */
interface IRemoteService {
 /** Request the process ID of this service. */
 int getPid();

 /** Demonstrates some basic types that you can use as parameters */
 int basicTypes(int anInt, byteArray[] aByteArray);

}

Android’s quick win: Services & AIDL

35

Compiled result:
package com.example.android;

public interface IRemoteService extends IInterface {
 public static class Default implements IRemoteService {
 @Override
 public boolean onTransact(int i, Parcel parcel, Parcel parcel2, int i2) throws RemoteException {
 switch (i) {
 case 1:

 int getPid_ = getPid();
 parcel2.writeNoException();
 parcel2.writeInt(getPid_);
 return true;
 case 2:

 int i1 = parcel.readInt();
 byte[] bArr = parcel.createByteArray();

 int basicTypes_ = basicTypes(i1, bArr);
 parcel2.writeNoException();
 parcel2.writeInt(basicTypes_);

Android’s quick win: getRuntime

▸ From the System class, command getRuntime executes provided command on the system

▸ A privileged application will have privileged rights for execution

▸ Searching for unsecure call to GetRuntime is always recommended

36

Process process = Runtime.getRuntime().exec("cp myFile /var/data/tmp/%s", target_name);

Getting deeper

37

▸ If you’re new to Android and want to get deeper in, I recommend looking at Hextree.io courses,
Android ones are free !

https://www.hextree.io/

38

Engineer mode

Engineer mode

▸ Engineer mode are often present in IVI, allowing after-sales analysis/debugging of units

▸ It could also be used to trigger/modify specific features of the IVI

▸ To activate this mode, it may be required to:
▸ Perform specific pattern on the touch screen
▸ Insert an USB key with a specific file/folder
▸ Use UDS command

39

Illustration: [link] &
 [link]

https://n-cars.net/forums/threads/radio-engineer-mode-android.2406/page-4
https://vicone.com/blog/how-a-vehicles-smart-cockpit-can-get-hacked-via-a-malicious-update-file

Finding how to activate engineer mode

▸ For common IVI, method to activate engineer mode can be found on various forums/websites

▸ On Android-based IVI, search for ClickListener or onLongClickListener usage and Intent which
could be named with *engineer* or *debug*

▸ On some devices, using an UDS WriteDataByIdentifier request could activate such mode

40

Illustration: [link]

https://www.youtube.com/watch?v=R9WlrkBioi8

Lab 5 - Accessing Engineer Menu

Goals

▸ Complete challenges Infotainment - Engineer Mode to access to the Engineer Menu

414141

42

Analysing USB
interface

Scanning supported devices

▸ IVI may support various USB devices, scanning them may give us hints on some capabilities
(keyboard, mass storage, usb to ethernet support, …)

▸ Well known device for this task is the Facedancer21 board and umap2, which are old but reliable
tools

▸ Using the Facedancer Python library, it is simple to emulate USB devices to assess IVI with
compatible hardware, like the ones below

▸ We recommend using board like Cynthion or the Hydradancer, which offers higher data rate and
flexibility than the Facedancer21 and the GreatFET

43

Illustration: [link] &
 [link]

https://goodfet.sourceforge.net/hardware/facedancer21/
https://github.com/nccgroup/umap2
https://github.com/greatscottgadgets/facedancer
https://greatscottgadgets.com/cynthion/
https://blog.quarkslab.com/hydradancer-faster-usb-emulation-for-facedancer.html
https://blog.quarkslab.com/hydradancer-faster-usb-emulation-for-facedancer.html
https://vicone.com/blog/how-a-vehicles-smart-cockpit-can-get-hacked-via-a-malicious-update-file

Scanning supported devices

▸ umap2 from NCC group is the go-to tool to scan supported USB devices using a Facedancer21

▸ Connect the HOST port of the Facedancer21 to your computer and the TARGET one to the device
under test

▸ To simply scan a USB host, we can use the following command:

44

$ umap2scan -P fd:/dev/ttyUSB0
[.. redacted for readability ..]
[INFO] [SmartcardDevice] Response:
260345006d0075006c006100740065006400200053006d00610072007400630061007200
6400
[INFO] have been waiting long enough (over 6 secs.), disconnect
[INFO] [Max342xPhy] Disconnected device SmartcardDevice
[INFO] [Max342xPhy] Disconnect called when already disconnected
[ALWAYS] ---------------------------------
[ALWAYS] Found 2 supported device(s):
[ALWAYS] 1. audio
[ALWAYS] 2. cdc_acm

Emulating devices

▸ With the Facedancer 3.0 library, it is possible to emulate a USB device

▸ Working with this feature could help to scan for supported characteristic, find non-filtered Vendor
ID and Product ID …

▸ For instance, we can emulate a mass storage device and display live content written in clusters to
follow dump logs without having to remove a USB stick between various attempts of an attack

▸ Facedancer’s Github repository holds several examples to jump into USB emulation

45

https://github.com/greatscottgadgets/facedancer/tree/main/examples

Emulating devices - examples

46

from facedancer import *
from facedancer import main

@use_inner_classes_automatically
class HackRF(USBDevice): """ Device that emulates a HackRF enough to appear in ``hackrf_info``."""
 # Show up as a HackRF.
 product_string : str = "HackRF One (Emulated)"
 manufacturer_string : str = "Great Scott Gadgets"
 vendor_id : int = 0x1d50
 product_id : int = 0x6089

 class DefaultConfiguration(USBConfiguration):
 class DefaultInterface(USBInterface):
 pass

 @vendor_request_handler(number=14, direction=USBDirection.IN)
 @to_device
 def handle_control_request_14(self, request):
 request.reply([2])

 @vendor_request_handler(number=15, direction=USBDirection.IN)
 @to_device
 def handle_get_version_request(self, request):
 request.reply(b"Sekret Facedancer Version")

main(HackRF)

Lab 6 - Exploiting USB port

Goals

▸ You’ll analyse supported USB devices using umap2

▸ And emulate basic USB device using Facedancer

▸ Complete challenges Infotainment - USB

474747

48

Extracting Personally
Identifiable
Information

IVI: a personally identifiable information goldmine

▸ IVIs store lot of data, including:
▸ Phonebook address
▸ Navigation history
▸ Paired phone information
▸ Logs of call sent/received
▸ …

▸ Modern IVI are connected to internal/external camera, pictures may be retrieved

▸ If there is some compliance with the GDPR, logs may still contain privacy related data

49

Illustration: [link]

https://www.linkedin.com/pulse/automotive-industry-privacy-pii-ronen-lago/

IVI: a personally identifiable information goldmine

50

Collecting personal data

▸ Some IVI dump logs on USB mass storage device or SD card

▸ A specific folder or file may be required, or an activation through the engineer menu

▸ Trying USB to Ethernet adapter on USB port may lead access to exposed services

▸ It is common to have a USB Vendor ID or Product ID filtered for USB to Ethernet adapter, but
using an ASIX AX88772B device it can be altered

▸ Scanning UDS ReadDataByIdentifier may also provide sensitive data

51

Altering Asix VID/PID

▸ EEPROM memory of Asix AX88772 adapter can be flashed to modify their Vendor ID and Product ID

▸ It can be done using ethtool

52

#!/bin/bash
Original VID:PID: 0b95:7720
Product: AX88772
Manufacturer: ASIX Elec. Corp.

ETH=$(ip -o link|awk -F': ' '/ether.*00:6f:00/{print $2}')
if ["$ETH" != ""]; then
 # VID
 sudo ethtool -E $ETH magic 0xdeadbeef offset 0x0048 length 0x01 value 0x95
 sudo ethtool -E $ETH magic 0xdeadbeef offset 0x0049 length 0x01 value 0x0B
 # PID
 sudo ethtool -E $ETH magic 0xdeadbeef offset 0x004A length 0x01 value 0x77
 sudo ethtool -E $ETH magic 0xdeadbeef offset 0x004B length 0x01 value 0x20

 sudo ethtool -e $ETH offset 0x48 length 4
fi

Altering Asix VID/PID

▸ EEPROM memory of Asix AX88772 adapter can be flashed to modify their Vendor ID and Product ID

▸ It can be done using ethtool

53

#!/bin/bash
Original VID:PID: 0b95:7720
Product: AX88772
Manufacturer: ASIX Elec. Corp.

ETH=$(ip -o link|awk -F': ' '/ether.*00:6f:00/{print $2}')
if ["$ETH" != ""]; then
 # VID
 sudo ethtool -E $ETH magic 0xdeadbeef offset 0x0048 length 0x01 value 0x95
 sudo ethtool -E $ETH magic 0xdeadbeef offset 0x0049 length 0x01 value 0x0B
 # PID
 sudo ethtool -E $ETH magic 0xdeadbeef offset 0x004A length 0x01 value 0x77
 sudo ethtool -E $ETH magic 0xdeadbeef offset 0x004B length 0x01 value 0x20

 sudo ethtool -e $ETH offset 0x48 length 4
fi

Lab 7 - Export personal data

Goals

▸ Exploiting Engineer Mode and USB emulation, you’ll practice on recovering Personally Identifiable
data stored on the IVI

▸ Complete challenges Infotainment - Personally Identifiable Data

545454

55

Exploiting Bluetooth’
trust

Bluetooth Link Key

▸ In-Vehicle Infotainment supports Bluetooth BR/EDR to pair smartphone for phone calls or playing
music

▸ When two devices paired, they exchange their I/O capabilities to define how to establish an
encrypted connection:
▸ Just Works
▸ Numeric comparaison
▸ Passkey entry
▸ Out of Band

▸ Before Bluetooth 4.1, a Link Key is derived from the Pin code exchanged

▸ With Bluetooth 4.1+, the Link Key is derived using elliptic curves

▸ Communication between the two devices are encrypted based on derived value of the Link Key

▸ To bond two devices, they each store the computed link key for automatic pairing
56

Bluetooth Link Key exploitation

▸ Knowing the Link Key and the Bluetooth address (BDADDR) of a device, an attacker can mimic it to
automatically connect to the target device

▸ In Linux, this information is stored in /var/lib/bluetooth/

▸ At the root level, there is one folder by BDADDR of Bluetooth adapter connected to the computer

▸ Each folder contains sub-folders, named also with the BDADDR of connected devices

▸ In the info file (if present) there will be several information, including the Link Key if devices were
bonded

57

Mimicking Bluetooth address

▸ Some adapters can be programmed to modify their BDADDR

▸ Cambridge Silicon Radio CSR4.0 dongle is well known, but only supports Bluetooth 4.0

▸ Linux Bluez provides command bdaddr to modify the Bluetooth Address of supported chips

58

Bluetooth basis: getting BDADDR and scanning

▸ To get the Bluetooth address of the provided Bluetooth dongle, you can use the hcitool command

▸ To scan Bluetooth BR/EDR advertisement frames

59

$ sudo hciconfig
hci0: Type: Primary Bus: USB

BD Address: 00:1A:7D:DA:71:13 ACL MTU: 679:8 SCO MTU: 48:16
DOWN

[...]
$ sudo hciconfig hci0 up
$ sudo hcitool scan
Scan …
49:B2:CA:1A:B0:A1 (unknown)
49:B2:CA:1A:B0:A1 (unknown)

Bluetooth Link Key info file

▸ To allow your computer to use a known Link Key, you must in /var/lib/bluetooth find the folder with
the bdaddr of the adapter you want to use

▸ In this folder, create a new folder with the bdaddr of your target

▸ Create an empty attribute file

▸ Create an info file, containing at least:

60

$ cat info
[General]
Name=IVI
SupportedTechnologies=BR/EDR;

[LinkKey]
Key=DF28E75F341723D2ECA4A4B905B24F42
Type=8
PINLength=0

Enabling connection

▸ To apply changes, bluetooth system must be restarted

▸ Using bluetoothctl, connection to the target device could be started by typing

61

$ sudo systemctl restart bluetooth

$ sudo bluetoothctl

Agent registered
[CHG] Controller AA:BB:CC:DD:EE:FF Pairable: yes
[bluetooth]# connect 00:11:22:33:44:55

Lab 8 - Exploit Bluetooth Link Key

Goals

▸ Using the retrieved Sqlite database, you’ll find the link key of a device

▸ The goal is to mimic it to establish a Bluetooth connection to your IVI

▸ As the provided Bluetooth dongle is not supported by Bluez’s bdaddr, your dongle BDADDR will
be set in the IVI using UDS command

▸ Complete challenges Infotainment - Bluetooth Link Key

626262

Email:

Thank you
Contact information:

contact@quarkslab.com

@quarkslab

+33 1 58 30 81 51 Phone:

quarkslab.comWebsite:

contact@quarkslab.com

www.quarkslab.com

63

mailto:contact@quarkslab.com
https://quarkslab.com/

