Connected Car Hacking

Introduction to ECU reverse engineering

Quarkslab

Introduction to ECU reverse engineering

» Analysing firmware will help to understand how an ECU works, finding vulnerabilities , stored
secrets/credentials or hidden functions

» It's a very time-consuming task, as you will face a lot of different architectures
» Reverse engineering can be static, using SRE (Software Reverse Engineering) frameworks like
IDA/Ghidra/Binary Ninja... or dynamically using emulation like Qemu or by using available debug

ports

» Automate this task as much as you can

ECU inner workings

An ECU will have one or multiple microcontrollers (1C) or system-on-chip (SOC), each running its
own firmware/OS

HC/SOC are powered via a Power Distribution Circuit and handle multiples sensors and actuators
through input/output chips, like a CAN transceiver for example

Sensors - Actuators

ECU internal example #1 - Modern Instrument Cluster

» MCU: PowerPC SPC58 handles the CAN communication and most of the GPIO

» MC/SOC: IMX.6 SOC running QNX manage the display. The OS is stored on one of the two eMMC

CIEREED | -
LECEEDD o &

CAN Transc iver ... : N
[[P ..===__ N

ECU internal example #1 - Gateway

>

This ECU only have one MCU (PowerPC SPC58)

» HMC/SOC: As itis connected to all CAN buses, there are several CAN transceivers

°

08)\060|loe o0
@70.0/0 00

Transceivers

ECU internal example #3 - VI

» Infotainment unit is one of the most complex ECUs, having several SOCs for the OS and the various
radio protocol (Bluetooth, Wi-Fi...)

Step #1: getting the firmware

» An ECU will have one or multiple firmwares, depending on how many pC/SOC are inside
» For SOC, the firmware/OS image could be stored inside an external Flash memory

» Each pC/SOC will have a debug port on which you may read its firmware, however such ports are
often disabled/secured

» For PCM/ABS/BCM ECUs, you could find firmware images online on chip-tuning/reprogramming
forums. However, dumps are sometime incomplete as only a part of the memory was read

» Having access to a diagnostic tool or looking at manufacturer website could provide firmware
through updates, but they could be encrypted

Getting the firmware: debug access port

» Depending on the uC, you may access to the
debug port using JTAG, SWD or proprietary 293 VSSORSIFGH packngs pirs
tools

>

Most of the time, pC memory is

read-protected, to bypass it you’ll have to try

different attacks like Fault Injection or Cold
Boot Attack

5

x5

resky
3

WPD70F3620GC-UEU
WPD70F3621GC-UEU
WPD70F3622GC-UEU
POUNMITIANOTONALD o-
POYINTPOADTRG/TIAATTOAAGT

PO4INTPLCRXDO

8
g

Figure 2-61 VB50ES/FG3 package pin assignment

Getting the firmware: Flash memory

» For SOC, used in IVIs or TCUs, it's common to find the firmware/OS image on an external Flash
memory

» EMMC memory could sometime be dumped without removing the chip, using an SD-Card reader
connected to pins CLK, CMD, DAT[0-3] (example blogpost)

=

Left: eMMC Flash (BGA) - Right: NAND Flash (TSOP 48)

https://www.riverloopsecurity.com/blog/2020/03/hw-101-emmc/

Getting the firmware: UDS way

» It always worth a shot to look for UDS services such as Read Memory By Address or even Request
Upload (less likely), trying every available Diagnostic Session on an ECU

» Compare the size of the extracted data to the chip datasheet, you’ll find which kind of memory you
had access to (RAM, Flash memory ..))

» If you have access to a Diagnostic Tool, you can sniff a firmware upgrade. However, data could be
incomplete (ex: calibration update only)

10

ISO 22901: ODX/PDX

» Firmware updates are often provided as one or several ODX (Open Diagnostic Data Exchange)
files

» These are XML document describing supported services, data to update on specific memory
location...

» ODX files and binary related data could be provided as a PDX (Packaged ODX), which is a zip file

1

Lab 1 - Firmware extraction

» We got an odx file from a tuning forum 95B909144K_1902_BP.odx-f, have a look at it

» Look for specific mnemonics, like 'DATABLOCK!, 'FLASHDATA' or
'ENCRYPT-COMPRESS-METHOD'

» We managed to get a PDX file related to our IV, look at the files it contains

» We also captured the firmware upgrade resulting from the PDX on the CAN bus, analyse the
different frames and compare it with the PDX content

12

Reverse engineering the firmware: architecture

To reverse engineer a firmware, we first have to know for which architecture it has been compiled

>
» Look for the microcontroller’s datasheet to get such information
» Itis common that automotive pC datasheet are under NDA, so search for approaching references

RM0444

‘,I Hie.cuomented Reference manual

STM32G0x1 advanced Arm®-based 32-bit MCUs

Introduction
manual complements the datasheets of the STM32G0x1 microcontrollers,
and in particular for software development. It

This reference
e p:
ble on STM32G0x1 microcontroliers.

provi

chanical and electrical characteristics of a
responding datasheet.
+ core, refer to the Cortex®-M0+ technical

+ corel®)

on booting STM32 MCUs(®)

« STM32GOx1 device errata sheets'®)

Reverse engineering the firmware: endianness

» Once you know the architecture, you may need to find out the endianness used -

=

» Look for the microcontroller’s datasheet to get such information

» Some architecture could use both endianness, using binbloom will help you find out which one is
correct: "binbloom -a [architecture bits] file’

32-bit integer 32-bit integer
Memory 0A0BOCOD 0A0BOCOD Memory
¢1:;0AJ<—‘ > 40D
u-l:?OB(— » a+1:0C
u°2:iOC e u-.’_:VOB
(1'3.iOD - > a+3: 0A
BB Big-endian Little-endian | :

14

https://github.com/quarkslab/binbloom
https://en.wikipedia.org/wiki/Endianness

Reverse engineering the firmware: base address

» The base address is the address in the memory where the firmware is loaded from

» Knowing this address will helps the SRE tool you're using to find cross-references to pointers,
functions ...

0x8000 0000 | | ox4000 0000

» Look at the datasheet to find it

block 3

Ox1FFF 787F
Ox1FFF 7800

Engineering bytes
block 2 g g bnt 0x1FFF 7500

o i 0x1FFF 73FF
0x4000 0000 0x1FFF 7000

0x6000 0000 Option bytes

| System memory
block 1 Ox1FFF 0000

0x2000 0000

block 0 Code Main Flash memory

0x0800 0000

0x0000 0000

i

Addressable Main Flash memory /
enan System memory /
space) Hmory
e RAM

0x0000 0000

15

Lab 2 - Firmware analysis

» To test binbloom, we provide a 2013 Polo ECU firmware. Try to identify endianness, base address,
UDS database detection (it is based on a Tricore TC1766)

» For all other RE lab, we will work on the TinyECU firmware, available in the previous PDX

» Look at the provided manual to find the endianness and the base address

16

Reverse engineering the firmware: using Binary Ninja

» We will use Binary Ninja as our SRE tool to introduce some automotive-specific reverse
engineering techniques on the TinyECU firmware

» Under the menu File, choose Open and select the 'lVI_v2.1_app.bin'
» The architecture will be correctly detected and set to “thumb2”

» The base address needs to be set at 0Ox08000000 :

=~ Load Options (5)
Entry Point Offset (

Image Base Address

Platform

thumb2

Section Descriptions

]

Segment Descriptions

auto_defined data_length data_offset flags length start

true 0x6cf8 0 5 Ox6cf8 O 1 7

Reverse engineering the firmware: mapping the memory

» Our PDX provides two binary, we need to load the second one

» Using the Memory Map window, right click to select the “Add Segment” menu, set the correct start
address and length.

» Once created, with a right-click on the new segment, choose “Add Memory Region” to load the
second binary

Memory Map Add Segment X
Segments

Start ~ 7 Start: 20000000

Add Memory Region X

Source: File Backed Region v
Name: calib

Length: 21C Start: 0x20000000

Data Offset: Length:

File: Select File

Data Length:
R M w:

File Name: 1VI_v2.1_calib.bin
R: v W: X%

Cancel Cancel

18

Mapping the registers

» Mapping the various registers is also helpful, but it is a time-consuming task

» Plugins exists to automatise such task, like Load SVD File. Use it to automatically map main
registers using the 'STM32G0B1.svd' file

CMSIS-SVD XML Hierarchy
Device Level

CPU Level

Peripherals Level

Registers Level

e]
: Fields Level

st

19

Reverse engineering basis: CPU registers & instructions

» The CPU executes a set of instructions
» Each instruction is defined by an opcode, a hexadecimal value
» To store data, the CPU uses the memory or registers (a0-a15, dO-d15)
» Asitis a 32 bits microcontroller, data can be stored as a:
» Byte, coded “b” (8 bits)

» Half-word, coded “h” (16 bits)
» Word, coded “w” (32 bits)

[13 ”

» By default, data is signed, if the “u” prefix is present, it means that data is unsigned

20

Instruction examples

» Idr r3, [DAT_00007670]
Load in register r3 the byte value stored at memory address OxO0007670

> Idrhr5, [r4, #0]
Load in register r5 the two bytes value stored at memory address present in register r4, with a O
offset

» beq LAB_0000Odbfa
Branch to address 0xO000dbfa if previous comparison (cmp) is equal

» movw r1, #0x726
Move 4 bytes value O0x00000726 in register r1

» Full instruction set can be found here:
https://developer.arm.com/documentation/ddi0403/d/Application-Level-Architecture/The-ARMv7-M-
Instruction-Set/About-the-instruction-set

21

https://developer.arm.com/documentation/ddi0403/d/Application-Level-Architecture/The-ARMv7-M-Instruction-Set/About-the-instruction-set
https://developer.arm.com/documentation/ddi0403/d/Application-Level-Architecture/The-ARMv7-M-Instruction-Set/About-the-instruction-set

Grap view & pseudo code

» A microcontroller has a set of instructions and CPU registers

» When analysing a function, do not try to understand each instruction, it is a waste of time

» Look at pseudocode or graph view instead to have a quick understanding of what is executed
» Do not try to analyse each function, start from a target interrupt or peripheral register instead

» Look also for some specific values, like UDS Services, CAN identifier, DID ...

22

UDS reverse engineering - DID database

» DIDs are a good hint to find references to their functions and associated data

» Itis common that DIDs are stored as an array of struct, including theirs DID value and a pointer to
a function managing it

» Search for value OxF190 (VIN DID) using the appropriate endianness and analyse if you see a
pattern

Find X
» Try to create the correct struct and apply it to each DID [EEERZEEEIEEIRIEETEE v Find all
Search for: | Sl ~ | Mode: FlexHex

v Case insensitive v Ignore whitespace Overlap Raw string Alignment: 1

Search range:

23

UDS database

» The same applies for the UDS Services: they are
commonly available in a DB, which is an array of
struct

» Using one of the DID function you find, try to cross-ref
to the DID handler and search for the start address in
the memory

» Hint: as the arch is in Thumb mode, it’'s normal to find
pointer you'll need to add " | 1 to the address to find
the correct pointer

» Look around to identify the different supported UDS
Services, try to guess the correct structure and label
all the functions

IVIv21_app..bin e S] Change Type
Types Q yes Types (C syntax):

{} Name struct UDS_Service_entry __packed

~ User Types: IVL_... {

(S) UDS_RDBI_en uint8_t Serviceld;

uint16_t something;

(B
S pMA1

(S pMA2
(S) pMAMUX
®EexTI

struct UDS_RDBI_entry
__packed

24

UDS Negative Response Code

Remember, UDS protocol is verbose

Looking at constants matching UDS

NegativeResponseCode can help you to confirm the

function you are analysing is a UDS one

if (cvar2 != '\x03') {
if (cvar2 !'= '\x04') {
if (cvar2 == '\x05') {

iVard = FUN_a0154b90((undefined2 *) (param_1 + 0x54));
if (ivard == 0) {

ivard = return_0();

if (ivard == 0) {

return 0x2f;
}
/¥ UDS NRC GeneralReject */
¥param_3 = 0x10;

return 1;
}
if (ivard == 1) {
/% UDS NRC ConditionsNonCorrect */
uvarS = 0x22;
}
else {

if (ivard == 10) {
return Oxa;

}
uvarS = GeneralReject;
}
}
else {
_uVarS = GeneralReject;
i
*¥param_3 = uVarS;
return 1;

}

25

Lab 3 - Firmware analysis

» Look for known DID value and try to find the DID database and map DID_Read and DID_Write
structures

» Label all the DID functions

» Find the UDS database, set the correct struct and label all UDS functions

26

Using AutoSAR specifications

AUTOSAR is a “worldwide development partnership of vehicle manufacturers”

>
It provides documentation and standards for the automotive industry

It also provides a platform, the standardized ECU software architecture

>
Application Layer
AUTOSAR Runtime Environment (RTE)
Complex|
Drivers

Services Layer

Basic
Software
(BSW)
Microcontroller (MCU)
AUTOSAR Architecture

>

=

27

https://www.einfochips.com/blog/autosar-in-automotive-industry/

AutoSAR

Most of the ECU are designed using an AutoSAR framework
Studying AutoSAR protocol specifications helps to understand or identifying standard functions or

>

Implementation

—

Bus Simulation
/

>

variables of a firmware ECU

AUTOSAR -
» |5,

= System Design
PREEvision

=

28

https://www.vector.com/us/en/products/products-a-z/software/preevision/autosar-system-software-design/#c5134

AutoSAR: DCM module

» UDS functions are defined in the Diagnostic Communication Manager

=

» The API specification chapter in each specification documents define base type, functions or
enums

» Provided functions arguments, return type and operating mode is helpful to identify AutoSAR
defined functions during reverse engineering process 892 <Modules_<DisgnosticServices_<SubService

[SWS_Dcm_00764] |

Service Name <Module>_<DiagnosticService>_<SubService>
Syntax

8.9.1 <Module>_<DiagnosticService>

[SWS_Dcm_00763] [Service ID [hex] 0x33
Sync/Async Asynchronous
Service Name <Module>_<DiagnosticService> Reentrancy Reentrant
Syntax Parameters (in) OpStatus DCM_INITIAL DCM_PENDING DCM_CANCEL DCM_FORCE
ce> (RCRRP_OK DCM_POS_RESPONSE_SENT DCM_POS,

Std_Re
) RESPONSE_FAILED DCM_NEG_RESPONSE_SENT DCM
NEG_RESPONSE_FAILED

M lated i

protocol identifier.

Parameters (inout) pMsgContext ge: forone
The pointers in pMsgContext shall point behind the SID.

Parameters (out) ErrorCode f the operation <Module_<DiagnosticService>_<SubService>
Service ID [hex] 0x32 returns value E_NOT OK, the Dcm module shail send a negative
response with NRC code equal to the parameter ErrorCode
parameter value.

Sync/Async Asynchronous

Reentrancy Reentrant Return value Std_ReturnType E_OK: Request was successful
\v4 E_NOT_OK: Request was not successful
DCM_E_PENDING: Request is not yet finished
DCM_E_FORCE_RCRRP: Application requests the ransmission
of a response Response Pending (NRC 0x78)

v 29

https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.autosar.org/fileadmin/standards/R21-11/CP/AUTOSAR_SWS_DiagnosticCommunicationManager.pdf&ved=2ahUKEwiGzM-ZkuaQAxUcVKQEHeXGOyUQFnoECBcQAQ&usg=AOvVaw22Pj0q007nnm7MVzCOIf5v

Lab 4 - AutoSAR calls

» Map the ErrorCode pointer and try to check various functions using it

30

AutoSAR: module interactions

» To keep hardware dependent functions separate from independent ones, a “simple” task could -
involve several modules, like sending a CAN message =
» This improves portability, reusability and scalability across different ECUs and automotive

networks

’ CAN NM A —{ COM Manager ! cANNMB ‘

S

CAN State Manager

[CAN Interface |
It [T[T
: § |
cmdn,:ﬁm ’ ‘ CAN dnver

CAN ccntroller 0 CAN conlrolrer 1 ’

CAN trax BON| . Sometpescl (‘/\Nl iver 1

CAN n

31

https://www.vtronics.in/2021/02/autosar-for-dummies-13-canif.html

AutoSAR: locate useful functions

» Knowing commonly used AutoSAR functions may help to understand part of the firmware -

=

» AutoSAR DET_ReportError is a great candidate, as it is generally used to trace errors
» It also contains useful arguments: ModulelD and ApilD

» This function has a lot of calls with static arguments for the ModulelD and ApilD, allowing a quick
identification

8.1.3.2 Det_ReportError void FUN_000c68da(void)
{
[SWS_Det_OOOOQ] [undefined4 *puVarl;
int unaff_gp;

int unaff_tp;

Service Name Det_ReportError uint War2;
Syntax Std_ReturnType Det_ReportError (undefined4 *puvar3;
uintl6 Moduleld,
uint8 Insbanceld, if ((S8DAT_ffff8004)[unaff_gp]l == '\0') {
uint8 ApiIld, DET_ReportError(0x65,0,7,0xf) ;
uint8 ErrorId }
) else {

32

https://www.autosar.org/fileadmin/standards/R22-11/CP/AUTOSAR_SWS_DefaultErrorTracer.pdf

Finding Module ID and Api ID

» AUTOSAR provides a list of all base module for the Basic Software (BSW) layer

-]
» Each module has a 16-bits ID and a dedicated Specification document where all base Service ID
are listed, which correspond to the ApilD >

» Using this information will allow us to quickly identify AutoSAR functions inside our firmware

Module 8.3.8 Mcu_PerformReset
o Module
abbreviation < :
Module short name (AP) service ID Specification document [SWS_Mcu_00160][
prefix) (uint16) Service Name Mcu_PerformReset
void Mcu PerformReset (
GPT Driver Gpt 100 |AUTOSAR_SWS_GPTDriver.pdf Syntax void
)
MCU Driver Mcu 101 |AUTOSAR_SWS_MCUDriver.pdf [Service D [hex] o]
Watchdog Driver Wdg 102 |AUTOSAR_SWS_WatchdogDriver.pdf

33

https://www.autosar.org/fileadmin/standards/R20-11/CP/AUTOSAR_TR_BSWModuleList.pdf
https://www.autosar.org/fileadmin/standards/R20-11/CP/AUTOSAR_SWS_MCUDriver.pdf

Identifying AutoSAR functions

» If we have a match regarding AutoSAR specifications for a Module ID and a Service ID, we can
compare arguments and return value to identify the target function >

void EthIf_Init(int param_1) Module T
{ abbreviation odule
i 2 Module short name AP sarvice
int iVarl; :,reﬁx) (uint16)
ivarl = 0; LIN Interface Linlf 062
if (DAT_7000415c == '\0') {
if (param 1==0) { LIN Transceiver Driver LinTrev 064
, iVarl =5 Ethemet Interface Ethif 065
else {
DAT_701008f8 = param_1; [SWS_Ethlf_00024] [
FUN_a0163ad8 (l i Service Name Ethlf_Init

DAT_7000415c X1 ;

Syntax void EthIf_Init (
} const EthIf_ConfigTypex CEgPtr
})
else { l Service ID [hex] 0x01
ivarl = 7; T~ Sync/Async #ync Tonous
} Reentrancy Non Reentrant
if (ivarl !=0) { Parameters (in) CfgPtr Points to the implementation specific structure
l DET_ReportError(0x41,0,1,iVarl); | Parameters (inout) None
return; Parameters (out) None
} Return value None
return; <— Description Initializes the Ethernet Interface
il via Ethlf.h

i

34

https://www.autosar.org/fileadmin/standards/R22-11/CP/AUTOSAR_SWS_EthernetInterface.pdf

Lab 5 - Finding AUTOSAR Det_ReportError

» Look at identified UDS functions if you see a pattern that looks like Det_ReportError
» Using cross-references find various calls

» Compare arguments of functions of interest with the AutoSAR BSW Module List:
https://www.autosar.org/fileadmin/standards/R19-11/CP/AUTOSAR TR BSWModulelist.pdf

» Once found, try to locate functions tied to the PDU Router module

35

https://www.autosar.org/fileadmin/standards/R19-11/CP/AUTOSAR_TR_BSWModuleList.pdf

Quarkslab

Thank you

Contact information:

Email: contact@quarkslab.com

Phone: +33 158 30 81 51

Website: www.quarkslab.com

@ 3 @quarkslab

—

—/

mailto:contact@quarkslab.com
https://quarkslab.com/

