
Introduction to ECU reverse engineering

Connected Car Hacking

Introduction to ECU reverse engineering

▸ Analysing firmware will help to understand how an ECU works, finding vulnerabilities , stored
secrets/credentials or hidden functions

▸ It’s a very time-consuming task, as you will face a lot of different architectures

▸ Reverse engineering can be static, using SRE (Software Reverse Engineering) frameworks like
IDA/Ghidra/Binary Ninja… or dynamically using emulation like Qemu or by using available debug
ports

▸ Automate this task as much as you can

2

ECU inner workings

▸ An ECU will have one or multiple microcontrollers (µC) or system-on-chip (SOC), each running its
own firmware/OS

▸ µC/SOC are powered via a Power Distribution Circuit and handle multiples sensors and actuators
through input/output chips, like a CAN transceiver for example

3

ECU internal example #1 - Modern Instrument Cluster

▸ MCU: PowerPC SPC58 handles the CAN communication and most of the GPIO

▸ µC/SOC: IMX.6 SOC running QNX manage the display. The OS is stored on one of the two eMMC

4

Power distribution circuit

MCU

eMMC

SOC
RAM

CAN Transceiver

ECU internal example #1 - Gateway

▸ This ECU only have one MCU (PowerPC SPC58)

▸ µC/SOC: As it is connected to all CAN buses, there are several CAN transceivers

5

MCU

CAN
Transceivers

ECU internal example #3 - IVI

▸ Infotainment unit is one of the most complex ECUs, having several SOCs for the OS and the various
radio protocol (Bluetooth, Wi-Fi…)

6

SOC
beneath

SOC BT/Wi-Fi eMMCMCU

DSP

Power MCU #2
beneath

GPS
beneath

Step #1: getting the firmware

▸ An ECU will have one or multiple firmwares, depending on how many µC/SOC are inside

▸ For SOC, the firmware/OS image could be stored inside an external Flash memory

▸ Each µC/SOC will have a debug port on which you may read its firmware, however such ports are
often disabled/secured

▸ For PCM/ABS/BCM ECUs, you could find firmware images online on chip-tuning/reprogramming
forums. However, dumps are sometime incomplete as only a part of the memory was read

▸ Having access to a diagnostic tool or looking at manufacturer website could provide firmware
through updates, but they could be encrypted

7

Getting the firmware: debug access port

▸ Depending on the µC, you may access to the
debug port using JTAG, SWD or proprietary
tools

▸ Most of the time, µC memory is
read-protected, to bypass it you’ll have to try
different attacks like Fault Injection or Cold
Boot Attack

TinyECU GPSM V850 µC debug ports

8

Getting the firmware: Flash memory

▸ For SOC, used in IVIs or TCUs, it’s common to find the firmware/OS image on an external Flash
memory

▸ EMMC memory could sometime be dumped without removing the chip, using an SD-Card reader
connected to pins CLK, CMD, DAT[0-3] (example blogpost)

Left: eMMC Flash (BGA) - Right: NAND Flash (TSOP 48)
9

https://www.riverloopsecurity.com/blog/2020/03/hw-101-emmc/

Getting the firmware: UDS way

▸ It always worth a shot to look for UDS services such as Read Memory By Address or even Request
Upload (less likely), trying every available Diagnostic Session on an ECU

▸ Compare the size of the extracted data to the chip datasheet, you’ll find which kind of memory you
had access to (RAM, Flash memory …)

▸ If you have access to a Diagnostic Tool, you can sniff a firmware upgrade. However, data could be
incomplete (ex: calibration update only)

10

ISO 22901: ODX/PDX

▸ Firmware updates are often provided as one or several ODX (Open Diagnostic Data Exchange)
files

▸ These are XML document describing supported services, data to update on specific memory
location...

▸ ODX files and binary related data could be provided as a PDX (Packaged ODX), which is a zip file

11

Lab 1 - Firmware extraction

Goals

▸ We got an odx file from a tuning forum 95B909144K_1902_BP.odx-f, have a look at it

▸ Look for specific mnemonics, like 'DATABLOCK', 'FLASHDATA' or
'ENCRYPT-COMPRESS-METHOD'

▸ We managed to get a PDX file related to our IVI, look at the files it contains

▸ We also captured the firmware upgrade resulting from the PDX on the CAN bus, analyse the
different frames and compare it with the PDX content

12

Reverse engineering the firmware: architecture

▸ To reverse engineer a firmware, we first have to know for which architecture it has been compiled

▸ Look for the microcontroller’s datasheet to get such information

▸ It is common that automotive µC datasheet are under NDA, so search for approaching references

13

Reverse engineering the firmware: endianness

▸ Once you know the architecture, you may need to find out the endianness used

▸ Look for the microcontroller’s datasheet to get such information

▸ Some architecture could use both endianness, using binbloom will help you find out which one is
correct: `binbloom -a [architecture bits] file`

Illustration: [link]

14

https://github.com/quarkslab/binbloom
https://en.wikipedia.org/wiki/Endianness

Reverse engineering the firmware: base address

▸ The base address is the address in the memory where the firmware is loaded from

▸ Knowing this address will helps the SRE tool you're using to find cross-references to pointers,
functions …

▸ Look at the datasheet to find it

15

Lab 2 - Firmware analysis

Goals

▸ To test binbloom, we provide a 2013 Polo ECU firmware. Try to identify endianness, base address,
UDS database detection (it is based on a Tricore TC1766)

▸ For all other RE lab, we will work on the TinyECU firmware, available in the previous PDX

▸ Look at the provided manual to find the endianness and the base address

16

Reverse engineering the firmware: using Binary Ninja

▸ We will use Binary Ninja as our SRE tool to introduce some automotive-specific reverse
engineering techniques on the TinyECU firmware

▸ Under the menu File, choose Open and select the 'IVI_v2.1_app.bin'

▸ The architecture will be correctly detected and set to “thumb2”

▸ The base address needs to be set at 0x08000000

17

Reverse engineering the firmware: mapping the memory

▸ Our PDX provides two binary, we need to load the second one

▸ Using the Memory Map window, right click to select the “Add Segment” menu, set the correct start
address and length.

▸ Once created, with a right-click on the new segment, choose “Add Memory Region” to load the
second binary

18

Mapping the registers

▸ Mapping the various registers is also helpful, but it is a time-consuming task

▸ Plugins exists to automatise such task, like Load SVD File. Use it to automatically map main
registers using the 'STM32G0B1.svd' file

19

Reverse engineering basis: CPU registers & instructions

▸ The CPU executes a set of instructions

▸ Each instruction is defined by an opcode, a hexadecimal value

▸ To store data, the CPU uses the memory or registers (a0-a15, d0-d15)

▸ As it is a 32 bits microcontroller, data can be stored as a :
▸ Byte, coded “b” (8 bits)
▸ Half-word, coded “h” (16 bits)
▸ Word, coded “w” (32 bits)

▸ By default, data is signed, if the “u” prefix is present, it means that data is unsigned

20

Instruction examples

▸ ldr r3, [DAT_00007670]
Load in register r3 the byte value stored at memory address 0x00007670

▸ ldrh r5, [r4, #0]
Load in register r5 the two bytes value stored at memory address present in register r4, with a 0
offset

▸ beq LAB_0000dbfa
Branch to address 0x0000dbfa if previous comparison (cmp) is equal

▸ movw r1, #0x726
Move 4 bytes value 0x00000726 in register r1

▸ Full instruction set can be found here:
https://developer.arm.com/documentation/ddi0403/d/Application-Level-Architecture/The-ARMv7-M-
Instruction-Set/About-the-instruction-set

21

https://developer.arm.com/documentation/ddi0403/d/Application-Level-Architecture/The-ARMv7-M-Instruction-Set/About-the-instruction-set
https://developer.arm.com/documentation/ddi0403/d/Application-Level-Architecture/The-ARMv7-M-Instruction-Set/About-the-instruction-set

Grap view & pseudo code

▸ A microcontroller has a set of instructions and CPU registers

▸ When analysing a function, do not try to understand each instruction, it is a waste of time

▸ Look at pseudocode or graph view instead to have a quick understanding of what is executed

▸ Do not try to analyse each function, start from a target interrupt or peripheral register instead

▸ Look also for some specific values, like UDS Services, CAN identifier, DID …

22

UDS reverse engineering - DID database

▸ DIDs are a good hint to find references to their functions and associated data

▸ It is common that DIDs are stored as an array of struct, including theirs DID value and a pointer to
a function managing it

▸ Search for value 0xF190 (VIN DID) using the appropriate endianness and analyse if you see a
pattern

▸ Try to create the correct struct and apply it to each DID

23

UDS database

▸ The same applies for the UDS Services: they are
commonly available in a DB, which is an array of
struct

▸ Using one of the DID function you find, try to cross-ref
to the DID handler and search for the start address in
the memory

▸ Hint: as the arch is in Thumb mode, it’s normal to find
pointer you'll need to add ` | 1` to the address to find
the correct pointer

▸ Look around to identify the different supported UDS
Services, try to guess the correct structure and label
all the functions

24

UDS Negative Response Code

▸ Remember, UDS protocol is verbose

▸ Looking at constants matching UDS
NegativeResponseCode can help you to confirm the
function you are analysing is a UDS one

25

Lab 3 - Firmware analysis

Goals

▸ Look for known DID value and try to find the DID database and map DID_Read and DID_Write
structures

▸ Label all the DID functions

▸ Find the UDS database, set the correct struct and label all UDS functions

26

Using AutoSAR specifications

▸ AUTOSAR is a “worldwide development partnership of vehicle manufacturers”

▸ It provides documentation and standards for the automotive industry

▸ It also provides a platform, the standardized ECU software architecture

27

Illustration: [link]

https://www.einfochips.com/blog/autosar-in-automotive-industry/

AutoSAR

▸ Most of the ECU are designed using an AutoSAR framework

▸ Studying AutoSAR protocol specifications helps to understand or identifying standard functions or
variables of a firmware ECU

28

Illustration: [link]

https://www.vector.com/us/en/products/products-a-z/software/preevision/autosar-system-software-design/#c5134

▸ UDS functions are defined in the Diagnostic Communication Manager

▸ The API specification chapter in each specification documents define base type, functions or
enums

▸ Provided functions arguments, return type and operating mode is helpful to identify AutoSAR
defined functions during reverse engineering process

29

Illustration: [link]

AutoSAR: DCM module

https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.autosar.org/fileadmin/standards/R21-11/CP/AUTOSAR_SWS_DiagnosticCommunicationManager.pdf&ved=2ahUKEwiGzM-ZkuaQAxUcVKQEHeXGOyUQFnoECBcQAQ&usg=AOvVaw22Pj0q007nnm7MVzCOIf5v

Lab 4 - AutoSAR calls

Goals

▸ Map the ErrorCode pointer and try to check various functions using it

30

▸ To keep hardware dependent functions separate from independent ones, a “simple” task could
involve several modules, like sending a CAN message

▸ This improves portability, reusability and scalability across different ECUs and automotive
networks

31

Illustration: [link]

AutoSAR: module interactions

https://www.vtronics.in/2021/02/autosar-for-dummies-13-canif.html

▸ Knowing commonly used AutoSAR functions may help to understand part of the firmware

▸ AutoSAR DET_ReportError is a great candidate, as it is generally used to trace errors

▸ It also contains useful arguments: ModuleID and ApiID

▸ This function has a lot of calls with static arguments for the ModuleID and ApiID, allowing a quick
identification

32

Illustration: [link]

AutoSAR: locate useful functions

https://www.autosar.org/fileadmin/standards/R22-11/CP/AUTOSAR_SWS_DefaultErrorTracer.pdf

▸ AUTOSAR provides a list of all base module for the Basic Software (BSW) layer

▸ Each module has a 16-bits ID and a dedicated Specification document where all base Service ID
are listed, which correspond to the ApiID

▸ Using this information will allow us to quickly identify AutoSAR functions inside our firmware

33

 Illustration: [link] &
 [link]

Finding Module ID and Api ID

https://www.autosar.org/fileadmin/standards/R20-11/CP/AUTOSAR_TR_BSWModuleList.pdf
https://www.autosar.org/fileadmin/standards/R20-11/CP/AUTOSAR_SWS_MCUDriver.pdf

▸ If we have a match regarding AutoSAR specifications for a Module ID and a Service ID, we can
compare arguments and return value to identify the target function

34

 Illustration: [link]

Identifying AutoSAR functions

https://www.autosar.org/fileadmin/standards/R22-11/CP/AUTOSAR_SWS_EthernetInterface.pdf

Lab 5 - Finding AUTOSAR Det_ReportError

Goals

▸ Look at identified UDS functions if you see a pattern that looks like Det_ReportError

▸ Using cross-references find various calls

▸ Compare arguments of functions of interest with the AutoSAR BSW Module List:
https://www.autosar.org/fileadmin/standards/R19-11/CP/AUTOSAR_TR_BSWModuleList.pdf

▸ Once found, try to locate functions tied to the PDU Router module

35

https://www.autosar.org/fileadmin/standards/R19-11/CP/AUTOSAR_TR_BSWModuleList.pdf

Email:

Thank you
Contact information:

contact@quarkslab.com

@quarkslab

+33 1 58 30 81 51 Phone:

quarkslab.comWebsite:

contact@quarkslab.com

www.quarkslab.com

mailto:contact@quarkslab.com
https://quarkslab.com/

