
Ignition - Automotive cybersecurity & networks bootstrap

Connected Car Hacking

Access

2

- Discord server: https://discord.gg/E4cqVzq2

https://discord.gg/E4cqVzq2

Detail of a modern car

3

Same base as many decades: 4 wheels around a motor

But with significant improvements:
- Driving assistances (anti-collision, line detection, ESP/ABS, road sign reconnaissance, self-park…)
- Connectivity (GPS/LTE/Wi-Fi/Bluetooth…)
- Onboard services (remote control, localisation, auto-diagnostic…)
- Autonomous driving (Mercedes reached level 3 autonomous driving, fall 2021)

Illustration: [link]

https://www.adlittle.com/fr-fr/FutureCarSales

Cores of a car: ECUs

4

ECU: Electronic Control Unit

It reads SENSORS, manage ACTUATORS, communicate with others ECU/DEVICES/BACKEND through
wired or wireless networks. Could be one or several MCU/SOC.

Illustration: [link] &

 [link]

https://connectorsupplier.com/evolution-automotive-connectivity-autonomous-vehicle-technology-drives-need-speed-bandwidth/
https://www.ficosa.com/multimedia/images/products/telematic-control-unit/

ECUs communications: multiple internal networks

5

Illustration: [link]

https://primatec.tn/expertises/in-vehicle-networks/

LIN: Local Interconnect Network

6

Illustration: [link]

▸ Single wire serial network protocol with speed up to 19.2 Kbit/s (ISO 17987)

▸ Broadcast protocol allowing up to 16 nodes

▸ Master - slave communication system

▸ Low cost network for non-critical application (locking system…)

https://community.nxp.com/t5/Blogs/101-Local-Interconnect-Network-LIN/ba-p/1284877

CAN: Controller Area Network

7

Illustration: [link]

▸ Two wires half-duplex network protocol with speed up to 1 Mbit/s (ISO 11898)

▸ Fault resistant protocol

▸ CAN-FD (Flexible Data Rate) allows speed up to 8 Mbit/s

▸ Most commonly used in-vehicle network to connect ECUs

https://www.tuningblog.eu/fr/kategorien/tipps_tuev-dekra-u-co/malware-can-bus-285180/

MOST: Media Oriented System Transport

8

Illustration: [link]

▸ High speed multimedia network with speed up to 150 Mbit/s (ISO 21806)

▸ Ring network topology to transport audio, video, voice and data signals

▸ Expensive network using optical fibre

https://blog.fcpeuro.com/what-is-volvos-most-bus

FLEXRAY

9

Illustration: [link]

▸ High performance 2/4 wires network protocol with speed up to 10 Mbit/s (ISO 17458)

▸ Fault resistant and deterministic

▸ TDMA (Time Division Multiple Access): Flexray node communicates during a scheduled time slot

▸ Used for high-performance applications (Steer-by-wire, ADAS, …)

https://www.ni.com/fr-fr/innovations/white-papers/06/flexray-automotive-communication-bus-overview.html

Automotive Ethernet - 100/1000Base-T1

10

Illustration: [link]

▸ High speed two wires network with speed up to 1 000 Mbit/s

▸ Physical layer different from traditional ethernet (100/1000Base-T1, BroadR-Reach)

▸ Less expensive than MOST

▸ Handle generic network protocols and automotive specifics

https://www.vector.com/int/en/products/solutions/networks/automotive-ethernet/

Automotive Ethernet - 10Base-T1S

11

Illustration: [link]

▸ Multidrop ethernet network with speed up to 10 Mbit/s

▸ Allows ethernet homogeneous network

▸ Use twisted pairs as CAN and 100/1000Base-T1 networks

▸ Supports at least 8 nodes in 25m max

https://www.keysight.com/blogs/en/tech/2024/02/8/how-is-10base-t1s-different-from-can

CAN-XL

12

Illustration: [link]

▸ Latest evolution of the CAN protocol started in 2018 (eXtra Long)

▸ Compatible with CAN-FD, allows speed up to 20 Mbit/s and 2048 bytes of payload

▸ Can tunnel Ethernet frames

https://www.bosch-semiconductors.com/ip-modules/can-protocols/can-xl/

Attack surfaces

13

USB/Wi-Fi/Bluetooth/LTE/GNSS
Telematic & infotainment

Computer vision
ADAS

UHF
Direct TPMS

V2V/V2G/V2I/V2X
Short/medium range comm.

USB/OBD-II
Wired interfaces

RFID/UHF
PKE/RKE

PLC
Charging station

Illustration: [link]

https://www.cio-practice.fr/pratiques-de-dsi/strategie/la-voiture-du-futur-six-tendances-pour-le-developpement-de-lautomobile/

Automotive & cybersecurity: milestone

14

In 2015 security researchers shown major vulnerabilities in a connected vehicle, causing the recall of
1.5M of vehicles in US

1. https://static.nhtsa.gov/odi/rcl/2015/RCRIT-15V461-7681.pdf

Illustration: [link]

https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

Network segregation

15

Illustration: [link]

Nowadays, it is common that in-vehicle networks are segregated regarding their usage, a gateway
managing a secure bridge between them

https://www.eetasia.com/24618-2/

From Domain to Zonal controller

16

Illustration: [link]

OEMs tend to switch from Domain architectures to Zonal architectures, where a central computer
handles data and actuators from different isolated zones, providing better scalability/reliability, bringing
software-defined vehicles

https://www.electronicdesign.com/markets/automotive/article/21166567/electronic-design-whats-the-difference-between-domain-and-zonal-automotive-architectures

Electrical vehicle plugs

17

Illustration: [link]

▸ Electrical vehicle are able to
communicate with charging station
using PLC or CAN

▸ PLC communication is made via
Control Pilot pin

CCS Type 1 & 2 GB/T Tesla

https://www.researchgate.net/figure/Examples-of-EV-connectors-a-SAE-J1772-Type-1-b-SAE-J3068-EU-Type-2-c-BB_fig2_362436188

Vehicle-to-grid

18

Illustration: [link]

▸ Plug & charge, defined by ISO-15118,
allows drivers to simply plug their
vehicle and start charging without
needing to authenticate

▸ It provides a standardized secure
communication protocol, relying on
several certificates (OEM, MO, CPO…)
using several PKIs

https://www.researchgate.net/figure/System-overview-of-the-ISO-15118-protocol_fig1_319431250

UN/EU regulations

19

Security

UNECE WP.29 - Regulations no. 155 & 156 (annex 1958 agreement since 22 January 2021)
- Manage vehicle cybersecurity risks
- Secure vehicles by design
- Detect /respond to security incidents across a vehicle fleet
- Provide safe, secure software updates

Safety

EU 2015/758 - april 2015: mandatory e-Call system in new cars
- Data/voice connection plus GNSS

UNECE R64 - 2009 & UNECE R141 - 2017: mandatory tire pressure monitoring system

> Safety brings more attack surface and complexity, requiring more Security for automotive <

From ISO 26262 (ASIL)

20

Illustration: [link]

ASIL: Automotive Safety Integrity Levels

https://www.microcontrollertips.com/what-are-asils-and-how-do-they-work-faq/

To ISO 21434 (overview)

21

Illustration: [link]

UN Regulations R155 & R156 refer to ISO 21434

https://www.researchgate.net/publication/343790924_ISOSAE_DIS_21434_Automotive_Cybersecurity_Standard_-_In_a_Nutshell

AutoSAR

22

Illustration: [link]

▸ Development partnership of automotive
parties (manufacturer, Tier 1 suppliers)
founded in 2003

▸ Defines a standardized software
architecture for ECUs, methodology and
procedures

▸ A whole car is modelled using an AutoSAR
compliant architecture tool, then specific
information for an ECU are extracted

https://www.renesas.com/eu/en/application/automotive/common-automotive-technologies/autosar/autosar-layered-architecture

Training equipment:
presentation

Virtual machine

24

▸ Ubuntu based VM, including:
▸ Can-utils & Scapy: CAN tools
▸ srsRAN & Open5GS: LTE network emulation tools (with BladeRF support)
▸ Sysmo-isim-tools: programmable SIM management
▸ imHex: Hex editor
▸ Binary Ninja: reverse engineering software
▸ Saleae Logic 2: logic analyser
▸ JADX: APK reverse engineering
▸ Terminator: multi-window terminal
▸ Facedancer: USB emulation
▸ Unicorn/Keystone/Capstone & AFL++: software emulation and fuzzing
▸ Wireshark, Nmap, Bettercap: network analysis
▸ WHAD: Bluetooth Low Energy toolkit

Training ECUs and tools

25

Playing with real ECUs

▸ One of our Car in a Box will be available during the
training

▸ A Raspberry Pi with a PiCAN hat is connected to
one of the CAN bus, giving access at least to the
ICM

▸ Wi-FI SSID: Quarkslab_CarHacking
▸ Wi-Fi passphrase: HackMyC4r!
▸ IP: 192.168.11.254
▸ Login: student
▸ Password: canihack

26

CAN 101

CAN bus: key concepts

28

Illustration: [link]

▸ Broadcasted messages

▸ The Arbitration ID (11 bits: 0x000-0x7FF) and Extended Arbitration ID (29 bits: 0x1FFFFFFF) allows
priority and anti-collision of CAN messages

▸ Payload of 8 bytes for CAN, 64 bytes for CAN-FD and 2048 bytes for CAN-XL

https://www.mdpi.com/2624-831X/5/2/15

CAN bus wiring

▸ Two wires: twisted pair with an CAN High and CAN Low wire

▸ The bus is terminated by a 120 ohms resistor to prevent signal reflection

Illustration: [link]

29

https://www.kmpdrivetrain.com/paddleshift/practical-tips-can-bus/

CAN bus signaling

▸ Differential signaling: the voltage difference on each wire defines the signal sent (fault resistant)

▸ Dominant state (0): CAN High is at ~ 3.5V, CAN Low is at ~ 1.5V

▸ Recessive state (1): CAN High drops to ~ 2.5V, CAN Low level increases to ~ 2.5V

0 1

30

Type of CAN frames

▸ Data frame: sent by a transmitter node to all other nodes

▸ Error frame: sent by any node detecting an error

▸ Remote frame: sent by a node to request the transmission of a data frame with the same identifier

▸ Overload frame: flow control, injects an extra delay after a data or remote frame

31

Anatomy of a data frame

▸ Arbitration ID: from 0x000 to 0x7FF (11 bits) in standard mode, up to 0x1FFFFFFF (29 bits) in
extended mode

▸ RTR: defines if it’s a data frame or remote frame
▸ IDE: defines the arbitration ID mode (standard/extended)
▸ r0: recessive (1) for CAN-FD frames
▸ Data: 8 bytes, up to 64 bytes in CAN-FD
▸ CRC/ACK: used for error detection
▸ Bit stuffing: if 5 same bits are consecutive, an opposite bit is added to the frame

32

CAN bus signalling

▸ CAN: 10, 20, 62.5, 125, 250, 500, 800 and 1 000 Kb/s

- Most commonly used speed is 500 Kb/s
- Non-critical buses use lower speed

▸ CAN-FD: up to 8 Mb/s

Arbitration phase limited to 1Mb/s to be backward compatible with classic CAN

▸ CAN-XL: up to 20 Mb/s

33

Provided CAN adapter

▸ Based on an STM32G0 chip + 2x TJA1051 transceiver

▸ Supports CAN-FD

▸ Appears as a native CAN interface, supporting CANSocket

▸ Built-in selectable 120 ohms terminations

▸ Uses candleLight firmware

▸ You’ll get the smaller CAN adapter to practice on real ECUs
after the training

34

https://github.com/candle-usb/candleLight_fw

Setting up the CAN adapter

▸ Find out the interface name

$ ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
[...]
3: vcan0: <NOARP,UP,LOWER_UP> mtu 72 qdisc noqueue state UNKNOWN group
default qlen 1000
 link/can
4: vcan1: <NOARP,UP,LOWER_UP> mtu 72 qdisc noqueue state UNKNOWN group
default qlen 1000
 5: can0: <NOARP,ECHO> mtu 16 qdisc noop state DOWN group default qlen 10
 link/can

35

Setting up the CAN adapter

▸ Using ip command, set the device at the desired speed (here 500Kbps)

▸ If you need to change the speed of the interface, you'll need to bring it down first

▸ You can also rename the interface, to have the same label than the CAN bus you're working on

$ sudo ip link set can0 up type can bitrate 500000 dbitrate 500000 fd on
To support classic CAN (no-fd)
$ sudo ip link set can0 up type can bitrate 500000

$ sudo ip link set can0 down

$ sudo ip link set can0 name CAN-HS

36

Setting up the CAN adapter

▸ You may also need to set a bigger buffer when sending a large amount of data

▸ If everything is correctly set, you must get the following output

$ sudo ip link set can0 txqueuelen 1000

$ sudo ip a | grep can
3: can0: <NOARP,UP,LOWER_UP> mtu 16 qdisc pfifo_fast state UP group default qlen
1000
 link/can

37

Reading a CAN bus: candump

▸ The can-utils library has many tools to work with CAN bus

▸ Candump display every message going through the bus

$ candump -x -e -a can0

can0 TX - - 2e0 [3] 02 06 64 '..d’
can0 TX - - 130 [3] 02 06 64 '..d’
can0 RX - - 121 [2] 01 46 '.F’
can0 RX - - 124 [2] 01 46 '.F’
can0 TX - - 128 [8] 07 33 68 65 65 6C 70 6F '.3heelpo’

Message length
Arbitration ID

Message data

Options :
-x: display RX/TX
-e: display error frames
-a : ASCII output

38

Reading a CAN bus

▸ Filters can be applied to only display specific arbitration ID or a range of ID using masks

▸ For each filter, add “,” followed by the desired arbitration ID then “:” and the desired mask
A binary comparison is made with the mask, only ID matching mask “1” bit are displayed

$ candump -x -e -a can0,123:7FF,030:7F0

can0 TX - - 123 [3] 02 06 64 '..d’
can0 RX - - 031 [5] 00 01 02 A6 64 '....d’
can0 RX - - 036 [2] 01 46 '.F’
can0 RX - - 123 [2] 01 46 '.F’
can0 TX - - 03F [8] 07 33 68 65 65 6C 70 6F '.3heelpo’

39

Write on a CAN bus: cansend

▸ Cansend is the most basic tool to send data over the CAN bus

▸ Mandatory arguments :
can0: the can bus interface
321#c0ff33: arbitration ID in hex followed by a hashtag and 1 to 8 bytes of data

▸ An empty frame can also be sent

▸ To send a CAN-FD frame, use 2 “#” followed by a flag bit (0 by default), then the message

$ cansend can0 321#c0ff33

$ cansend can0 321#

$ cansend vcan0 321##0c0ff33

40

Lab 1 - setting and interacting with a CAN Bus

Goals

▸ On your CAN-FD adapter board, connect CAN0 and CAN1

▸ Using “ip” command, configure and activate the two CAN bus with a bitrate of 500 000 kbps with
FD active

▸ Complete challenges Ignition - canutils

41

Scapy: CAN

▸ Scapy is a packet manipulation program written in Python

▸ Very useful to capture, craft packets on different kind of networks

▸ Can load or save pcap to interact with Wireshark

▸ More info on https://scapy.net/

▸ Has multiple automotive libraries 😎
Complete documentation is available here:
https://scapy.readthedocs.io/en/latest/layers/automotive.html

42

https://scapy.net/
https://scapy.readthedocs.io/en/latest/layers/automotive.html

Scapy: CAN

▸ To be able to use Scapy with CAN packets, it is mandatory to load at least the layer CAN

▸ From a Python script, you can import Scapy using

▸ "Contrib" are additional modules that extend the capability of Scapy. Multiple contribs are available
for the automotive, like cansocket which allows to communicate with socketcan sockets, like the
one of our CAN adapter

$ scapy
>>> load_layer("can")

43

$ scapy
>>> load_layer("can")
>>> load_contrib("cansocket")

from scapy.all import *

Scapy: CAN - writing on a CAN bus

▸ Try the following command to send a message on the bus

▸ We load the can layer and the cansocket contrib, which are mandatory

▸ We create a “socket” on our CAN interface

▸ Using the CAN method, we create a CAN packet and send it through our socket

▸ The option flags=’extended’ could be added to our packet to have an extended ID

$ scapy
>>> load_layer("can")
>>> load_contrib("cansocket")
>>> s = CANSocket(channel="can0") # add fd=True for CAN-FD support
>>> s.send(CAN(identifier=0x123, data=b'\x01\x02\x03'))

44

Scapy: CAN - reading on a CAN bus

▸ Scapy has three methods, recv, sr and sr1 which means Receive and Send and Receive. sr and sr1
first send a packet, then capture the result(s)

▸ However, with all the traffic on the CAN bus, those methods are useless

▸ The sniff method fills our needs, try the following commands in your Scapy terminal

>>> pkts = s.sniff(count=5)
<Sniffed: TCP:0 UDP:0 ICMP:0 Other:5>
>>> for pkt in pkts:
. . .: pkt.show()

45

Scapy: CAN - using options and callback with sniff

▸ Option count sets the maximum number of CAN frame to capture

▸ The timeout option (floating number) sets the duration, in seconds, before the function ends

▸ Using prn option sets a callback to a method or a lambda on the captured frame

▸ Try the following command:

>>> s.sniff(timeout=10.0, count=50, prn=lambda x: x.show())

46

Scapy: CAN - filtering the socket

▸ As Scapy standard filters are based on Berkeley Packet Filter (BPF), they do not work with the
CAN layer

▸ However, the cansocket contrib handles filter like candump (identifier + bit mask)

▸ Filters have to be set during the socket initialization

▸ Let’s update our socket

>>> s.close()
>>> s = CANSocket(channel="can0", can_filters=[{"can_id":0x123, "can_mask":0x7FF}])
>>> s.sniff(timeout=10.0, count=50, prn=lambda x: x.show())

47

Scapy: CAN - loading/saving captures

▸ Scapy supports both Wireshark and candump logs

▸ Using rdpcap or wrpcap, it is possible to read/write a pcap file

▸ Candump logs can only be read using rdcandump method

>>> pkts = s.sniff(count=50)
>>> wrpcap("./test.pcap", pkts)
>>> pcap = rdpcap("./test.pcap")
>>> pkts
>>> pcap

>>> pkts = rdcandump("path_to_your_candump.log")
>>> pkts
<candump.log: TCP:0 UDP:0 ICMP:0 Other:52571>

48

Lab 2 - using Scapy with a CAN Bus

Goals

▸ can-utils is limited to process complex frames, perform computation on CAN messages or work with
diagnostic protocols

▸ Various Python modules support CAN messages, Scapy is the one we daily use, as it implements
higher-level protocols, like UDS

▸ Complete challenges CAN 101 - Scapy

49

ISO-TP & UDS

ISO-TP Transport Protocol

▸ ISO-TP protocol allows sending data over the 8 bytes limit of the standard CAN Bus

▸ It can carry up to 4095 bytes of payload

▸ ISO-TP segments messages into multiple frames

▸ The high nibble of the first byte of every frame defines its type

▸ 4 values are possible:
▸ 0: Single Frame
▸ 1: First Frame
▸ 2: Consecutive Frame
▸ 3: Flow Control Frame

ISO-TP - Single Frame

▸ To send up to 7 bytes using ISO-TP protocol, we will use a Single Frame

▸ The low nibble of the first byte define the length of the data transmitted

▸ Example:

▸ Standard CAN frame looks like ISO-TP Single Frame, you can differentiate them if padding is used

$ candump -a can0,7e0:7FF
can0 7e0 [8] 02 10 01 00 00 00 00 00 '........’

Frame type: Single Frame (0x0_)
Data length: 2 bytes (0x_2)
Data (2 bytes): 0x1001
Padding: optional, depends on the upper protocol (0x00 or 0xAA)

ISO-TP - Multiple frames: First Frame

▸ ISO-TP can send up to 4 095 bytes. If a message has more than 7 bytes, the high nibble of the
first frame will be 0x1, which means “First Frame”

▸ The low nibble of the first byte and the second byte are the length of the transmitted message,
from 0x000 to 0xFFF

▸ The replying ECU will wait for a Flow Control Frame to send the rest of the message

$ candump -a can0,7e0:700
can0 7e0 [8] 02 09 02 00 00 00 00 00 '........’
can0 7e8 [8] 10 14 49 02 41 42 43 44 ‘..1.abcd’

Frame type: First Frame (0x1_)
Data length: 20 bytes (0x014)
Data (OBD-II positive response + first 4 bytes)

ISO-TP - Multiple frames: Flow Control Frame

▸ To get the remaining frames of the message, the querying device has to send a Flow Control
Frame after receiving the First Frame

▸ The second byte tells the ECU how many frames will be sent without waiting for a new Flow
Control Frame. Set it to 0x00 for cancelling further control

▸ The third byte set the delay in milliseconds between two Consecutive Frames

$ candump -a can0,7e0:700
can0 7e0 [8] 02 09 02 00 00 00 00 00 ‘........’
can0 7e8 [8] 10 14 49 02 41 42 43 44 ‘..1.abcd’
can0 7e0 [8] 30 00 0A 00 00 00 00 00 ‘........’

Frame type: Flow Control Frame (0x3_) with Clear to Send status (0x_0)
Flow control: no further control (0x00)
Interval between two Consecutive Frame (10ms)

ISO-TP - Multiple frames: Consecutive Frames

▸ Once the Flow Control Frame is received, the ECU will send the rest of the message using
Consecutive Frames

▸ The low nibble of the first byte will increment and roll from 0x1 to 0xF for each frame of the
message

$ candump -a can0,7e0:700
can0 7e0 [8] 02 09 02 00 00 00 00 00 ‘........’
can0 7e8 [8] 10 14 49 02 41 42 43 44 ‘..1.abcd’
can0 7e0 [8] 30 00 0A 00 00 00 00 00 ‘........’
can0 7e8 [8] 21 45 46 47 48 48 50 51 ‘.efghijk’
can0 7e8 [8] 22 52 53 54 55 56 57 58 ‘.lmnopqr’

Frame type: Consecutive Frame (0x2_)
Data

Lab 3 - ISOTP

Goals

▸ Complete challenges CAN 101 - ISOTP

56

UDS - Universal Diagnostic Services

▸ UDS is a mandatory protocol for diagnosis, tuning and update operations on ECUs

▸ It uses Service and Sub-Function

▸ Queries are made by the Tester (client) to a Server (ECU)

▸ Each Server has its own Request arbitration ID and Reply arbitration ID

▸ Reply arbitration ID = Request arbitration ID + 0x08 (normally…)

▸ For each query, the Server replies with a positive response (Service code + 0x40) or negative
response (0x7F)

▸ Usual arbitration ID range is 0x700 to 0x7FF & 0x18DA0000-0x18DAFFFF, 0x7DF being reserved
as a broadcast request

UDS - Universal Diagnostic Services

Some useful services

▸ 0x10: Diagnostic Session Control
▸ 0x11: ECU Reset
▸ 0x27: Security Access
▸ 0x29: Authentication
▸ 0x3E: Tester Present
▸ 0x22: Read Data By Identifier
▸ 0x23: Read Memory By Address
▸ 0x2E: Write Data By Identifier
▸ 0x2F: Input/Output Control by Identifier
▸ 0x3D: Write Memory By Address
▸ 0x31: Routine Control
▸ 0x34: Request Download
▸ 0x35: Request Upload

And much more: https://en.wikipedia.org/wiki/Unified_Diagnostic_Services
https://automotive.softing.com/fileadmin/sof-files/pdf/de/ae/poster/UDS_Faltposter_softing2016.pdf

Negative Response Code (NRC)

▸ 0x10: General Reject
▸ 0x11: Service Not Supported
▸ 0x12: Sub-function Not Supported
▸ 0x13: Incorrect Message Length or Invalid Format
▸ 0x22: Conditions Not Correct
▸ 0x24: Request Sequence Error
▸ 0x31: Request Out Of Range
▸ 0x33: Security Access Denied
▸ 0x35: Invalid Key
▸ 0x36: Exceeded Number of Attempts
▸ 0x7E: Sub-Function not Supported in Active

Session
▸ 0x7F: Service Not Supported in Active Session

https://en.wikipedia.org/wiki/Unified_Diagnostic_Services
https://automotive.softing.com/fileadmin/sof-files/pdf/de/ae/poster/UDS_Faltposter_softing2016.pdf

UDS on CAN

▸ UDS request/response are send using the ISOTP protocol

▸ The first byte of the payload is the Service

▸ Other bytes depend on the requested Service

▸ Most of the UDS implementation requires padding

$ candump can0,7e0:7FF
can0 7e0 [8] 02 10 01 AA AA AA AA AA
Diagnostic session control with SubFunction 01 (defaultSession)
can0 7e0 [8] 03 21 F1 90 AA AA AA AA
Read data by identifier: DID 0xF190

Scapy: UDS

▸ Multiple automotive contribs exist in Scapy, one of them handle the UDS protocol

▸ You can craft a UDS message calling the related UDS Service constructor
 Reminder: if you’re running Scapy from the terminal, the autocompletion using “tab” works

>>> load_contrib("isotp") # Loading ISOTP contrib is required to create ISOTP sockets
>>> load_contrib("automotive.uds")

>>> UDS_ # Press tab to see all the supported services
>>> ls(UDS_DSC) # ls command lists all the arguments
diagnosticSessionType: ByteEnimField = ('0')
>>> session = UDS_DSC(diagnosticSessionType = 2)
>>> isotpsocket.send(UDS()/session)
>>> # An UDS Service has to be pack into an UDS frame to be sent: UDS/UDS_xx()

60

Scapy: UDS - some supported services

▸ 0x10: Diagnostic Session Control
▸ 0x11: ECU Reset
▸ 0x27: Security Access
▸ 0x3E: Tester Present
▸ 0x22: Read Data By Identifier
▸ 0x23: Read Memory By Address
▸ 0x2E: Write Data By Identifier
▸ 0x2F: Input/Output Control by Identifier
▸ 0x3D: Write Memory By Address
▸ 0x31: Routine Control
▸ 0x34: Request Download
▸ 0x35: Request Upload

UDS_DSC
UDS_ER
UDS_SA
UDS_TP
UDS_RDBI
UDS_RMBA
UDS_WBDI
UDS_IOCBI
UDS_WMBA
UDS_RC
UDS_RD
UDS_RU

61

Scapy: UDS - automatic NRC description

▸ When creating the ISO-TP socket with Scapy, adding basecls=UDS option give a full support of the
UDS protocol, even the NRC automatic translation

▸ Now try an unsupported request on the ECU

>>> isotpsocket = ISOTPSocket("can0", tx_id=0x7e0, rx_id=0x7e8, padding= True,
basecls=UDS)

>>> isotpsocket.sr1(UDS()/UDS_SA(securityAccessType = 0xFF), timeout=1.0)
Begin emission:
Finished sending 1 packets.
Received 1 packets, got 1 answers, remaining 0 packets
<UDS service=NegativeResponse |<UDS_NR requestServiceId=SecurityAccess
negativeResponseCode=subFunctionNotSupported>

62

Scapy: UDS

▸ Using the UDS_NR as a constant, you can check if the captured packet is an error, without looking
at the packet data

>>> pkt = isotpsocket.sr1(UDS/UDS_SA(securityAccessType = 0xFF), timeout=1.0)
Begin emission:
Finished sending 1 packets.
Received 1 packets, got 1 answers, remaining 0 packets
>>> pkt == UDS_NR # UDS_NR in pkt also works
True
>>> pkt.show()

63

Lab 4 - Scapy and UDS

Goals

▸ This training does not aimed to make you UDS experts, but we will use few basic Services in the
various

▸ Complete challenges CAN 101 - UDS

64

Automotive Ethernet

Automotive Ethernet: need for speed

▸ As car are becoming more and more complex (assisted/autonomous driving), there is a growing
need for:
▸ Low-latency
▸ Robust links over simple wires
▸ Flexible technologies that cover multiple use-cases

Illustration: [link]

66

https://www.vector.com/int/en/products/solutions/networks/automotive-ethernet/

Automotive Ethernet: two standards

▸ First implementation: 100/1000Base-T1
▸ Defined by IEEE 802.3bw 2015
▸ “Classical” point-to-point network

▸ Evolution: 10Base-T1S
▸ Defined by IEEE 802.3cg 2020
▸ Multidrop network

67

Illustration: [link]

https://www.redeweb.com/en/actualidad/microchip-presenta-sus-primeros-dispositivos-10base-t1s-ethernet-homologados-para-automocion/

Difference between Ethernet & 100/1000Base-T1

▸ Only the physical layer differs:
▸ Uses single differential unshielded copper twisted pair
▸ Uses PAM-3 signalling
▸ Maximum length is 15 m
▸ Connectors are not defined (no RJ45 !)
▸ A node is set as Master, the other as Slave, to handle echo cancellation

Illustration: [link] &
 [link]

68

https://inspiredhobbyist.org/what-is-some-ip-in-autosar/
https://blog.guardknox.com

Network topology

▸ ECUs are linked port to port or through switches

▸ An ECU can be a switch (gateway)

▸ Several VLANs are used for security or to define different levels of quality of services

Illustration: [link]

69

https://www.vector.com/fr/fr/produits/produits-a-z/software/preevision/automotive-ethernet-design/#c133576

10Base-T1S Automotive Ethernet

▸ Allows 2 to 8 nodes to communicate over a single twisted pair, up to 25m

▸ Aims to replace classical automotive networks, like CAN, having an all-Ethernet network

Illustration: [link]

70

https://www.keysight.com/blogs/en/tech/2024/02/8/how-is-10base-t1s-different-from-can

10Base-T1S Automotive Ethernet

▸ Also uses single differential unshielded copper twisted pair
▸ But relies on Differential Manchester Encoding (DEM) signalling
▸ Bus is terminated by 100 ohms resistors
▸ Each node has an ID, 0 being for the Master, for the Physical Layer Collision Avoidance (PLCA)
▸ The Master send periodic beacon . Slave nodes are given a transmit opportunity in order of their

ID
▸ A silence (~20 bits) is when a node has no data to transmit. It could also send a commit to buy

additional time to transmit data

Illustration: [link] &
 [link]

71

https://www.graniteriverlabs.com/en-us/technical-blog/automotive-ethernet-10-base-t1s
https://blog.teledynelecroy.com/2022/08/physical-layer-collision-avoidance-in.html

Connecting to an Automotive Ethernet network

▸ To connect to an automotive Ethernet network, a Media Independent Interface (MII) is required

▸ It bridges classical and automotive ethernet physical layers so you can plug an RJ-45

Illustration: [link] &
 [link]

72

https://cdn.intrepidcs.net/guides/rad-moon-duo/Introduction-and-Overview.html
https://intrepidcs.com/products/automotive-ethernet-tools/media-converters/rad-comet-10base-t1s-development-interface/

Automotive Ethernet
DoIP

Diagnostics Over IP

▸ DoIP (Diagnostics Over IP) allows remote and quicker diagnostic of a car (ISO 13400)

▸ It’s a transport protocol for diagnostic services like UDS over IP

▸ It also manages specific services like:
▸ Vehicle Identification
▸ Routing Activation
▸ Node information
▸ Aliveness Mechanism

▸ It uses both TCP and UDP

▸ Must use port 13400

74

Diagnostics Over IP

75

Illustration: [link]

https://www.embitel.com/blog/embedded-blog/what-are-the-important-security-aspects-of-doip-based-in-vehicle-network-and-related-best-practices

Diagnostics Over IP - Flowchart

76

Diagnostics Over IP - Message

8 bits 8 bits 8 bits 8 bits

Protocol Version
(0x02)

Inverse Protocol Version
(0xFD)

Payload Type
(0x8001)

Payload Length

Payload

77

Diagnostics Over IP: payload structure

▸ An ECU is identified by its 2 bytes Logical Address

▸ GW/Node Logical Addresses could be obtained using Vehicle Identification Requests

▸ Manufacturer Specific Addresses are in range 0x0001 - 0x0DFF & 0x1000 - 0x7FFF

Item Position (Byte) Length (Byte)

Source Address 0 2

Target Address 2 2

Data 4 …

78

Diagnostics Over IP: payload types

▸ 0x0001 : Vehicle Identification Request Message
▸ 0x0002 : Vehicle Identification Request Message with EID 1

▸ 0x0003 : Vehicle Identification Request Message with VIN
▸ 0x0004 : Vehicle Announcement Message/Vehicle Identification Response
▸ 0x0005 : Routing Activation Request
▸ 0x0006 : Routing Activation Response
▸ 0x0007 : Alive Check Request
▸ 0x0008 : Alive Check Response
▸ 0x4001 : Diagnostic Entity Status Request
▸ 0x4002 : Diagnostic Entity Status Response
▸ 0x8001 : Diagnostic Message
▸ 0x8002 : Diagnostic Message Positive Acknowledgement
▸ 0x8003 : Diagnostic Message Negative Acknowledgement

1. Entity Identifier, most of the time the MAC address 79

Diagnostics Over IP: sending a DoIP request w/ Scapy

▸ Using “automotive.doip” contrib we can craft/decode packets

▸ Reminder: to use raw network interfaces, scapy has to be run as “root”

>>> load_contrib("automotive.doip")
>>> s = L3RawSocket(iface="enp0s3")
>>> doip = DoIP(payload_type=0x0003, vin=b'VIN1234567890ABCD')
>>> resp = s.sr1(IP(dst="192.168.11.123")/UDP(dport=13400)/doip, timeout=2)

1. https://github.com/secdev/scapy/blob/master/scapy/contrib/automotive/doip.py 80

https://github.com/secdev/scapy/blob/master/scapy/contrib/automotive/doip.py

Diagnostics Over IP: routing activation

▸ Before sending Diagnostic Message, a route must be set over TCP

▸ Using payload type 0x4001, the tester must send a valid Logical Address and an Activation Type

▸ If the route is correctly set, the DoIP gateway/node will return its Logical Address

▸ When creating a DoIP TCP socket using `DoIPSocket`, Scapy will by default set a Source Address
0xE80 and an Activation Type 0x00

81

>>> load_contrib("automotive.doip")
>>> socket = DoIPSocket("192.168.11.123", source_address=0xE80,
activation_type=0x00)
>>> socket = DoIPSocket("192.168.11.123") # Does the same

Diagnostics Over IP: sending a DoIP message

>>> load_contrib("automotive.uds")
>>> load_contrib("automotive.doip")
>>> uds = UDS()/UDS_DSC(diagnosticSessionType= 0x01)
>>> doip = DoIP(payload_type=0x8001, source_address=0xe80, target_address=0x17ea)
>>> socket = DoIPSocket("192.168.11.123")
>>> resp = socket.sr1(doip/uds, timeout=2)

1. https://github.com/secdev/scapy/blob/master/scapy/contrib/automotive/doip.py 82

https://github.com/secdev/scapy/blob/master/scapy/contrib/automotive/doip.py

Lab 5 - DoIP

Goals

▸ Complete challenges Ignition - Automotive Ethernet

83

Automotive security:
good practices

Automotive network security: good practices

▸ CAN networks have known vulnerabilities, including:
▸ Non encrypted data and non authenticated sender
▸ Replayable messages

▸ AutoSAR implements SecOC to authenticate CAN messages

▸ Using TLS encryption is also recommended in Automotive Ethernet networks to prevent
man-in-the-middle attacks

▸ High-end designs already use MACSEC

85

Illustration: [link] &
 [link]

https://www.autosar.org/fileadmin/standards/R20-11/FO/AUTOSAR_PRS_SecOcProtocol.pdf
https://www.keysight.com/blogs/en/tech/traf-gen/2020/08/03/macsec-hardware-testingwhy-back-to-back-validation-falls-short

Email:

Thank you
Contact information:

contact@quarkslab.com

@quarkslab

+33 1 58 30 81 51 Phone:

quarkslab.comWebsite:

contact@quarkslab.com

www.quarkslab.com

mailto:contact@quarkslab.com
https://quarkslab.com/

