Connected Car Hacking

Ignition - Automotive cybersecurity & networks bootstrap

Quarkslab

- Discord server: https://discord.ga/E4cqVzg2

https://discord.gg/E4cqVzq2

Detail of a modern car

Same base as many decades: 4 wheels around a motor
Driving assistances (anti-collision, line detection, ESP/ABS, road sign reconnaissance, self-park...)

But with significant improvements:
- Connectivity (GPS/LTE/Wi-Fi/Bluetooth...)
Onboard services (remote control, localisation, auto-diagnostic...)
Autonomous driving (Mercedes reached level 3 autonomous driving, fall 2021)

https://www.adlittle.com/fr-fr/FutureCarSales

Cores of a car: ECUs

=

=

ECU: Electronic Control Unit
It reads SENSORS, manage ACTUATORS, communicate with others ECU/DEVICES/BACKEND through

wired or wireless networks. Could be one or several MCU/SOC.

Transmission

Electrical drives
(e.g. mirror, seat, sun roof, control
iper, windo
wiper, window) / Connectivity Aud7 system
/
TV module ADAS
(e.g. ACC, parking sensor,

/
olind spot detection, radar,

Engine Airbag
Control
Unit s /
Power [lane change assistance
steering
Trunk
latches

HID, LED
lighting
Diagnosis unit
Climate control | \
Keyless entry,
Dashboard | centrallock, :
| immobilizer | Bus interface protection
Telematics, multimedia, infotainment, ABS, ESP, TPMS,
GPS, navigation, E-call, tracking & electro-hydraulic brake,

traction control

car alarm system

https://connectorsupplier.com/evolution-automotive-connectivity-autonomous-vehicle-technology-drives-need-speed-bandwidth/
https://www.ficosa.com/multimedia/images/products/telematic-control-unit/

ST
=1

MO
Media Onented Systems Transport

Ethernet AVB (Audio Video Bridging)
Ethernet TSN (Time-Sensitive Networking)

ECUs communications: multiple internal networks

CAN
Controller Area Network

___I Collision Detection
System

LIN
Local Interconnect Network

AeYyiess oYysie

Ethernet
FlexRay
.".,\'.:‘ inction

Brake-by-Wire System

!

https://primatec.tn/expertises/in-vehicle-networks/

LIN: Local Interconnect Network

» Single wire serial network protocol with speed up to 19.2 Kbit/s (ISO 17987) -

=
» Broadcast protocol allowing up to 16 nodes

» Master - slave communication system

» Low cost network for non-critical application (locking system...)

e, A

|< — — — Frame Slot

Header Response

e e e i |

Break (14+) Sync (8) Identifier (8) Data (0-64) Checksum (8)

https://community.nxp.com/t5/Blogs/101-Local-Interconnect-Network-LIN/ba-p/1284877

CAN: Controller Area Network

» Two wires half-duplex network protocol with speed up to 1 Mbit/s (ISO 11898) -

=i
» Fault resistant protocol

» CAN-FD (Flexible Data Rate) allows speed up to 8 Mbit/s

» Most commonly used in-vehicle network to connect ECUs

https://www.tuningblog.eu/fr/kategorien/tipps_tuev-dekra-u-co/malware-can-bus-285180/

MOST: Media Oriented System Transport

High speed multimedia network with speed up to 150 Mbit/s (ISO 21806)

>
Ring network topology to transport audio, video, voice and data signals

>
Expensive network using optical fibre

>

=

https://blog.fcpeuro.com/what-is-volvos-most-bus

High performance 2/4 wires network protocol with speed up to 10 Mbit/s (ISO 17458) -

=

Fault resistant and deterministic

TDMA (Time Division Multiple Access): Flexray node communicates during a scheduled time slot

Used for high-performance applications (Steer-by-wire, ADAS, ...)

Cycle time: 1 ms

.Read Data N Process | Updafe
Suspension

https://www.ni.com/fr-fr/innovations/white-papers/06/flexray-automotive-communication-bus-overview.html

Automotive Ethernet - 100/1000Base-T1

» High speed two wires network with speed up to 1 000 Mbit/s =

=

» Physical layer different from traditional ethernet (100/1000Base-T1, BroadR-Reach)

» Less expensive than MOST

» Handle generic network protocols and automotive specifics

10

https://www.vector.com/int/en/products/solutions/networks/automotive-ethernet/

Automotive Ethernet - 10Base-T1S

» Multidrop ethernet network with speed up to 10 Mbit/s

=

» Allows ethernet homogeneous network
» Use twisted pairs as CAN and 100/1000Base-T1 networks

» Supports at least 8 nodes in 25m max

ﬂ Heterogeneous Networks Now 'mni Ethernet Homogenous Network

ECU1 ECU1
L) []
ECU2 e ECU2 3 e
L J 100BASE-T1 ECUS L 1008ASe-T1 [l ECUS ECUS
[2] 12
ECU3 a ECU3 £ =
g o> @ ® i []
< < <
° 3] 100BASE-T1 ECUG | & ._ Q 100BASE-T1 ECU6 |2 ECU9
ECU4 ® ECU4 [[]
[100BASE-T1 ECU7 [] 100BASE-T1 [l Ecy7 ECU 10

1

https://www.keysight.com/blogs/en/tech/2024/02/8/how-is-10base-t1s-different-from-can

>

>

>

Latest evolution of the CAN protocol started in 2018 (eXtra Long)

Compatible with CAN-FD, allows speed up to 20 Mbit/s and 2048 bytes of payload

Can tunnel Ethernet frames

:< Bit-rate gap N
1 1

100BASE-T1

Cost

A 4

10BASE-T1S

an <L

CANFD }

2 10 100 Mbit/s

=

12

https://www.bosch-semiconductors.com/ip-modules/can-protocols/can-xl/

Attack surfaces

V2V/V2G/V2I/V2X

Short/medium range comm. \
y

Computer vision
ADAS

UHF
Direct TPMS

USB/Wi-Fi/Bluetooth/LTE/GNSS
/ Telematic & infotainment

RFID/UHF
PKE/RKE

Charging station

Wired interfaces

=

13

https://www.cio-practice.fr/pratiques-de-dsi/strategie/la-voiture-du-futur-six-tendances-pour-le-developpement-de-lautomobile/

=

Automotive & cybersecurity: milestone

In 2015 security researchers shown major vulnerabilities in a connected vehicle, causing the recall of

1.5M of vehicles in US

14

1. https://static.nhtsa.gov/odi/rcl/2015/RCRIT-15V461-7681.pdf

https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

Network segregation

Nowadays, it is common that in-vehicle networks are segregated regarding their usage, a gateway
managing a secure bridge between them

[31ar] :uonensn|||

Over-the-Air
(OTA)
Services

Secure Body Control Domain
Connectivity o HVAC
Network Eonci SeatModule
Management Comfort Modules

ADAS & Service-
Autonomous Ny oriented i
isi Gateway
I N N
Utrasonic ()] ‘e ‘V/
Autonomous Powertrain & Vehicle
L <

i
= ience

15

https://www.eetasia.com/24618-2/

From Domain to Zonal controller

OEMs tend to switch from Domain architectures to Zonal architectures, where a central computer
handles data and actuators from different isolated zones, providing better scalability/reliability, bringing =
. . 3
software-defined vehicles Za¥
CONNECTIVITY
INFOTAINMENT
iy o\ P
v v, @ 3:’5:;:? (- ., .
POWERTRAIN &
VEHICLE DYNAMICS
ZONAL VEHICLE
16

ARCHITECTURES

DOMAIN VEHICLE ARCHITECTURES

https://www.electronicdesign.com/markets/automotive/article/21166567/electronic-design-whats-the-difference-between-domain-and-zonal-automotive-architectures

Electrical vehicle plugs

» Electrical vehicle are able to
communicate with charging station

using PLC or CAN CCS Type1&2

» PLC communication is made via @
Control Pilot pin)

(a) (b)
L1 Single-phase AC voltage S+ Charging Communication CAN
N Neutral S- 0V-30V 2A
CP Control Pilot CC1_|Charging Connection Confirmation
PP Proximity Pilot CC2 0V-30V 2A
PE Protective Earth A+ [Low-voltage auxiliary power supply
L1-1.2-1.3 Three-phase AC voltages A- 0V-30V 20A

17

https://www.researchgate.net/figure/Examples-of-EV-connectors-a-SAE-J1772-Type-1-b-SAE-J3068-EU-Type-2-c-BB_fig2_362436188

Vehicle-to-grid

» Plug & charge, defined by 1ISO-15118,
allows drivers to simply plug their
vehicle and start charging without
needing to authenticate

» |t provides a standardized secure
communication protocol, relying on
several certificates (OEM, MO, CPO...)
using several PKls

Original Equipment Mobility Charging Point
Manifacturer (OEM) Operator (MO) Operator (CPQ)
g
(1 1] =
H g ﬂ
. L]
LA L) L]
[~ LA R L] L
" contract
OEM certificate C?O
certificate / certificate
[_'_’ C,r Identification & Authentication
o~ ~O Communication
V2GTP (SOP&HLC)
ISO 15118-2
IS0 15118-3
SLAC g g
IEC 61851-1
Electric
Vehicle

Supply Equipment
Communication Supply
Controlier (SECC) Equipment

(EVSE)

18

https://www.researchgate.net/figure/System-overview-of-the-ISO-15118-protocol_fig1_319431250

UN/EU regulations

Security

UNECE WP.29 - Regulations no. 155 & 156 (annex 1958 agreement since 22 January 2021)
- Manage vehicle cybersecurity risks
- Secure vehicles by design
- Detect /respond to security incidents across a vehicle fleet
- Provide safe, secure software updates

Safety

EU 2015/758 - april 2015: mandatory e-Call system in new cars
- Data/voice connection plus GNSS

UNECE R64 - 2009 & UNECE R141 - 2017: mandatory tire pressure monitoring system

> Safety brings more attack surface and complexity, requiring more Security for automotive <

19

From ISO 26262 (ASIL)

Probability of exposure

Controllability

Severity of failure

SIL: Automotive Safety Integrity Levels

Rear View Camera
1lid Sensor Dat o
ASIL-B
A =
& -~
Brake nghts M \
ASIL-B X 5

Rear Lights

ASIL-A

Amlloclf 8|1k|ng

ASIL-D

Active Suspenslon

ASIL BtoC

Instrument Cluster

tical Dat

ASIL-B

ASIL-B

Vision ADAS

=

Auhdg
ASIL-D
anme Manaqemom
~ ASIL-Cto D

HeadLights

v ‘
3 A ASIL-B
1

—t

Radar Cruise Control

ASIL-B

Electric Power Steering

ASIL-D

20

https://www.microcontrollertips.com/what-are-asils-and-how-do-they-work-faq/

To ISO 21434 (overview)
UN Regulations R155 & R156 refer to ISO 21434
4. General considerations
5. Management of cybersecurity
5.1 Overall cybersecurity management 5.2 Cybersecurity management during concept 53 (.yt_)ersccumy_managcnwr_\t during
and product development phases production, operations and maintenance
6.1 Risk 6. Risk assessment methods
assessments 6.2 Asset 6.3 Threat 6.4 Impact 6.5 Vulnerability 6.6 Attack 6.7 Feasibility 6.8 Risk 6.9 Risk
methods identification analysis assessment analysis analysis Assessment assessment treatment
7. Concept phase 8. Product development 9. Production, operations
7.1 Cybersecurity and maintenance
relevance 8.1 System development phase 9.1 Production
7.2 Item definition
7.3 Initiation of product 8.2 Hardware development phase 8.3 Software development phase 9.2 Cybersecurity monitoring
development at the
concept phase 2 Z
8.4 Verification and validation 23 Vu_ ngrabnluty Panding st
incident response
8.5 Release for post-development 9.4 Updates
10.4 Tool Management

10. Supporting processes

7.4 Cybersecurity goals
10.3 Distributed cybersecurity activities

7.5 Cybersecurity Concept

10.2 Management systems

https://www.researchgate.net/publication/343790924_ISOSAE_DIS_21434_Automotive_Cybersecurity_Standard_-_In_a_Nutshell

AutoSAR

» Development partnership of automotive
parties (manufacturer, Tier 1 suppliers)
founded in 2003

» Defines a standardized software
architecture for ECUs, methodology and
procedures

» A whole car is modelled using an AutoSAR
compliant architecture tool, then specific
information for an ECU are extracted

@ Services layer is independent of

microcontroller (MCU) and ECU hardware %

ECU abstraction layer and complex drivers are independent of
microcontroller (MCU) and dependent on ECU hardware

Application Layer

AUTOSAR Runtime Environment (RTE)

J Services Layer

Complex
Drivers

2 ECU Abstraction Layer
.+ Microcontroller Abstraction Layer

—

L——————=a Microcontroller abstraction layer
is dependent on microcontroller (MCU)

22

https://www.renesas.com/eu/en/application/automotive/common-automotive-technologies/autosar/autosar-layered-architecture

Training equipment:
presentation

Quarkslab

Virtual machine

» Ubuntu based VM, including:
» Can-utils & Scapy: CAN tools
srsRAN & Open5GS: LTE network emulation tools (with BladeRF support)
Sysmo-isim-tools: programmable SIM management
imHex: Hex editor
Binary Ninja: reverse engineering software
Saleae Logic 2: logic analyser
JADX: APK reverse engineering
Terminator: multi-window terminal
Facedancer: USB emulation
Unicorn/Keystone/Capstone & AFL++: software emulation and fuzzing
Wireshark, Nmap, Bettercap: network analysis
WHAD: Bluetooth Low Energy toolkit

vV V. vV vV VvV VvV VvV VvV v Vv Y

24

Training ECUs and tools

n_=

4.0, 0.1

I ‘

=

Playing with real ECUs

» One of our Car in a Box will be available during the
training

» A Raspberry Pi with a PiCAN hat is connected to
one of the CAN bus, giving access at least to the

ICM
» Wi-FI SSID: Quarkslab_CarHacking
» Wi-Fi passphrase: HackMyC4r!
» IP:192.168.11.254
» Login: student
» Password: canihack

26

CAN 101

Quarkslab

CAN bus: key concepts

» Broadcasted messages

» The Arbitration ID (11 bits: OxO00-0x7FF) and Extended Arbitration ID (29 bits: Ox1FFFFFFF) allows
priority and anti-collision of CAN messages

» Payload of 8 bytes for CAN, 64 bytes for CAN-FD and 2048 bytes for CAN-XL

CAN Data Frame

Identifier Ctrl Length 2
11 Bits 6 Bits 4 Bits =

wv
(=]
-
Arbitration ! Control Data
CAN-FD Data Frame
8 Identifier Ctrl Length g
il 11 Bits 6 Bits 4 Bits =
Arbitration Control Data 28

https://www.mdpi.com/2624-831X/5/2/15

CAN bus wiring

>

>

The bus is terminated by a 120 ohms resistor to prevent signal reflection

Two wires: twisted pair with an CAN High and CAN Low wire

/ Max. 40 m

120 0

AAA.

O
CAN
Transceiver

I CAN Low /]\
x Main loop

Transceiver

O
CAN
Transceiver

Max.0,5m

=

29

https://www.kmpdrivetrain.com/paddleshift/practical-tips-can-bus/

CAN bus signaling

» Differential signaling: the voltage difference on each wire defines the signal sent (fault resistant)
» Dominant state (0): CAN High is at ” 3.5V, CAN Low is at ¥ 1.5V

» Recessive state (1): CAN High drops to ¥ 2.5V, CAN Low level increases to ¥ 2.5V

4,0 4,0

3.0

Type of CAN frames

» Data frame: sent by a transmitter node to all other nodes
» Error frame: sent by any node detecting an error
» Remote frame: sent by a node to request the transmission of a data frame with the same identifier

» Overload frame: flow control, injects an extra delay after a data or remote frame

31

Anatomy of a data frame

Arbitration Field

@
I
D
E

E
L

» Arbitration ID: from 0x000 to Ox7FF (11 bits) in standard mode, up to OX1FFFFFFF (29 bits) in
extended mode

RTR: defines if it's a data frame or remote frame

IDE: defines the arbitration ID mode (standard/extended)

r0O: recessive (1) for CAN-FD frames

Data: 8 bytes, up to 64 bytes in CAN-FD

CRC/ACK: used for error detection

Bit stuffing: if 5 same bits are consecutive, an opposite bit is added to the frame

vV vV VY v Vvy

32

CAN bus signalling

» CAN: 10, 20, 62.5, 125, 250, 500, 800 and 1 000 Kb/s

- Most commonly used speed is 500 Kb/s
- Non-critical buses use lower speed

» CAN-FD: up to 8 Mb/s

Arbitration phase limited to 1Mb/s to be backward compatible with classic CAN

» CAN-XL: up to 20 Mb/s

33

Provided CAN adapter

» Based on an STM32GO chip + 2x TJA1051 transceiver

» Supports CAN-FD

» Appears as a native CAN interface, supporting CANSocket
» Built-in selectable 120 ohms terminations

» Uses candleLight firmware

L
14

» You’ll get the smaller CAN adapter to practice on real ECUs
after the training

NTIY

§ ==
*% R6R7

LI.

[Fle

LH,

L

‘] :

https://github.com/candle-usb/candleLight_fw

Setting up the CAN adapter

» Find out the interface name

$ipa
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
default glen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
[...]
3: vcan0: <NOARP,UP,LOWER_UP> mtu 72 qdisc noqueue state UNKNOWN group
default glen 1000
link/can
4: vcan1: <NOARP,UP,LOWER_UP> mtu 72 qdisc noqueue state UNKNOWN group
default glen 1000
5: can0: <NOARP,ECHO> mtu 16 qdisc noop state DOWN group default glen 10
link/can

Setting up the CAN adapter

» Using ip command, set the device at the desired speed (here 500Kbps)

$ sudo ip link set can0 up type can bitrate 500000 dbitrate 500000 fd on
To support classic CAN (no-fd)
$ sudo ip link set can0 up type can bitrate 500000

» If you need to change the speed of the interface, you'll need to bring it down first

$ sudo ip link set can0 down

» You can also rename the interface, to have the same label than the CAN bus you're working on

$ sudo ip link set can0 name CAN-HS

Setting up the CAN adapter

» You may also need to set a bigger buffer when sending a large amount of data

$ sudo ip link set can0 txqueuelen 1000

» If everything is correctly set, you must get the following output

$ sudoip a | grep can
3: : <NOARP,UP,LOWER_UP> mtu 16 qdisc pfifo_fast state UP group default glen

1000
link/

Reading a CAN bus: candump

» The can-utils library has many tools to work with CAN bus

» Candump display every message going through the bus

$ candump -x -e -a can0 Options :

‘ -x: display RX/TX
can0 TX - - u(2e0\i [3] 02 06 64 - -e: display error frames
can0 TX-- 130! [3] 02 06 64 A 5 -a 1 ASCl! output

can0 RX-- 121 [2] 0146 N
can0 RX-- 124 [2] 0146 P

i 3hee|po’/5

1
Vo
'~

can0 TX-- 128! [8] 07 33 68 65 65 6C 70 6F

Message data

Message length
Arbitration ID

Reading a CAN bus

» Filters can be applied to only display specific arbitration ID or a range of ID using masks

» For each filter, add “” followed by the desired arbitration ID then “:” and the desired mask

A binary comparison is made with the mask, only ID matching mask “1” bit are displayed

$ candump -x -e -a can0,123:7FF,030:7F0

can0 TX-- 123 [3] 02 06 64
can0 RX-- 031 [5] 00 0102 A6 64

can0 RX-- 036 [2] 0146 “F’
can0 RX-- 123 [2] 0146 “F’
can0 TX-- O3F [8] 07 3368 65656C 70 6F ".3heelpo’

Write on a CAN bus: cansend

» Cansend is the most basic tool to send data over the CAN bus

$ cansend can0 321#c0ff33

» Mandatory arguments :
canO: the can bus interface
321#c0ff33: arbitration ID in hex followed by a hashtag and 1 to 8 bytes of data

» An empty frame can also be sent

$ cansend can0 321#

» To send a CAN-FD frame, use 2 “#” followed by a flag bit (O by default), then the message
$ cansend vcan0 321##0c0ff33

Lab 1 - setting and interacting with a CAN Bus

» On your CAN-FD adapter board, connect CANO and CAN1

» Using “ip” command, configure and activate the two CAN bus with a bitrate of 500 000 kbps with
FD active

» Complete challenges Ignition - canutils

41

Scapy is a packet manipulation program written in Python

Very useful to capture, craft packets on different kind of networks
Can load or save pcap to interact with Wireshark

More info on https://scapy.net/

Has multiple automotive libraries ==
Complete documentation is available here:
https://scapy.readthedocs.io/en/latest/layers/automotive.html

42

https://scapy.net/
https://scapy.readthedocs.io/en/latest/layers/automotive.html

To be able to use Scapy with CAN packets, it is mandatory to load at least the layer CAN

$ scapy

load_layer("can")

From a Python script, you can import Scapy using
from scapy.all import *

"Contrib" are additional modules that extend the capability of Scapy. Multiple contribs are available
for the automotive, like cansocket which allows to communicate with socketcan sockets, like the
one of our CAN adapter

$ scapy
load_layer("can")

load__contrib("cansocket")

Scapy: CAN - writing on a CAN bus

» Try the following command to send a message on the bus

$ scapy
load_layer("can")

load_contrib("cansocket")
s = CANSocket(channel="can0") # add fd=True for CAN-FD support
s.send(CAN(identifier=0x123, data=b"\x01\x02\x03"))

» We load the can layer and the cansocket contrib, which are mandatory
» We create a “socket” on our CAN interface
» Using the CAN method, we create a CAN packet and send it through our socket

» The option flags="extended’ could be added to our packet to have an extended ID

Scapy: CAN - reading on a CAN bus

» Scapy has three methods, recv, sr and sr1 which means Receive and Send and Receive. sr and sr1
first send a packet, then capture the result(s)

» However, with all the traffic on the CAN bus, those methods are useless

» The sniff method fills our needs, try the following commands in your Scapy terminal

pkts = s.sniff(count=5)

< : :
for pkt in pkts:
pkt.show()

Scapy: CAN - using options and callback with sniff

» Option count sets the maximum number of CAN frame to capture
» The timeout option (floating number) sets the duration, in seconds, before the function ends
» Using prn option sets a callback to a method or a lambda on the captured frame

» Try the following command:

s.sniff(timeout=10.0, count=50, prn=lambda x: x.show())

46

Scapy: CAN - filtering the socket

» As Scapy standard filters are based on Berkeley Packet Filter (BPF), they do not work with the
CAN layer

» However, the cansocket contrib handles filter like candump (identifier + bit mask)
» Filters have to be set during the socket initialization

» Let’s update our socket

s.close()

s = CANSocket(channel="can0", can_filters=[{"can_id":0x123, "can_mask":0x7FF}])
s.sniff(timeout=10.0, count=50, prn=lambda x: x.show())

47

Scapy: CAN - loading/saving captures

» Scapy supports both Wireshark and candump logs
» Using rdpcap or wrpcap, it is possible to read/write a pcap file

pkts = s.sniff(count=50)
wrpcap("./test.pcap”, pkts)
pcap = rdpcap("./test.pcap")
pkts

pcap

» Candump logs can only be read using rdcandump method

pkts = rdcandump("path _to your candump.log")

pkts

>

Lab 2 - using Scapy with a CAN Bus

» can-utils is limited to process complex frames, perform computation on CAN messages or work with
diagnostic protocols

» Various Python modules support CAN messages, Scapy is the one we daily use, as it implements
higher-level protocols, like UDS

» Complete challenges CAN 101 - Scapy

49

ISO-TP & UDS

Quarkslab

ISO-TP Transport Protocol

» ISO-TP protocol allows sending data over the 8 bytes limit of the standard CAN Bus
» It can carry up to 4095 bytes of payload
» ISO-TP segments messages into multiple frames
» The high nibble of the first byte of every frame defines its type
» 4 values are possible:
» 0:Single Frame
1. First Frame

| 4
» 2:Consecutive Frame
» 3: Flow Control Frame

ISO-TP - Single Frame

» To send up to 7 bytes using ISO-TP protocol, we will use a Single Frame
» The low nibble of the first byte define the length of the data transmitted

» Example:

$ candump -a can0,7e0:7FF

can0 7e0 [8] 02 10 01 00 00 00 00 OO0

Padding: optional, depends on the upper protocol (0x00 or 0xAA)
» Data (2 bytes): 0x1001

» Frame type: Single Frame (0x0_)

» Standard CAN frame looks like ISO-TP Single Frame, you can differentiate them if padding is used

ISO-TP - Multiple frames: First Frame

» ISO-TP can send up to 4 095 bytes. If a message has more than 7 bytes, the high nibble of the
first frame will be Ox1, which means “First Frame”

» The low nibble of the first byte and the second byte are the length of the transmitted message,
from Ox000 to OxFFF

» The replying ECU will wait for a Flow Control Frame to send the rest of the message

$ candump -a can0,7e0:700
can0 7e0 [8] 02 09 02 00 00 00 00 00

can0 7e8 [8] 101449024142 43 44 “..1.abcd’

—» Data (OBD-Il positive response + first 4 bytes)

» Frame type: First Frame (0x1_)

ISO-TP - Multiple frames: Flow Control Frame

» To get the remaining frames of the message, the querying device has to send a Flow Control
Frame after receiving the First Frame

» The second byte tells the ECU how many frames will be sent without waiting for a new Flow
Control Frame. Set it to 0x00 for cancelling further control

» The third byte set the delay in milliseconds between two Consecutive Frames

$ candump -a can0,7e0:700
can0 7e0 [8] 020902 00 00 00 00 00

can0 7e8 [8] 1014 4902414243 44
can0 7e0 [8] 30 00 OA 00 00 00 00 00

Interval between two Consecutive Frame (10ms)

Frame type: Flow Control Frame (0x3_) with Clear to Send status (0x_0)

ISO-TP - Multiple frames: Consecutive Frames

» Once the Flow Control Frame is received, the ECU will send the rest of the message using
Consecutive Frames

» The low nibble of the first byte will increment and roll from Ox1 to OxF for each frame of the
message

$ candump -a can0,7e0:700
can0 7e0 [8] 02 09 02 00 00 00 00 00
can0 7e8 [8] 10 14 49 02 41 42 43 44

can0 7e0 [8] 30 00 OA 00 00 00 00 00
can0 7e8 [8] 214546 47 48 48 50 51
can0 7e8 [8] 22 52 53 54 55 56 57 58 “Imnopqr’

Data
Frame type: Consecutive Frame (0x2_)

Lab 3 - ISOTP

» Complete challenges CAN 101 - ISOTP

56

UDS - Universal Diagnostic Services

» UDS is a mandatory protocol for diagnosis, tuning and update operations on ECUs
» It uses Service and Sub-Function

» Queries are made by the Tester (client) to a Server (ECU)

» Each Server has its own Request arbitration ID and Reply arbitration ID

» Reply arbitration ID = Request arbitration ID + 0x08 (normally...)

» For each query, the Server replies with a positive response (Service code + 0x40) or negative
response (Ox7F)

» Usual arbitration ID range is 0x700 to Ox7FF & Ox18DA0000-0x18DAFFFF, Ox7DF being reserved
as a broadcast request

UDS - Universal Diagnostic Services

» Ox10: Diagnostic Session Control » 0x10: General Reject

» Ox11: ECU Reset » 0x11: Service Not Supported

» Ox27: Security Access » 0x12: Sub-function Not Supported

» 0Ox29: Authentication » 0x13: Incorrect Message Length or Invalid Format
» Ox3E: Tester Present » 0x22: Conditions Not Correct

» Ox22: Read Data By ldentifier » 0x24: Request Sequence Error

» Ox23: Read Memory By Address » 0x31: Request Out Of Range

» Ox2E: Write Data By Identifier » Ox33: Security Access Denied

» Ox2F: Input/Output Control by Identifier » 0x35: Invalid Key

» Ox3D: Write Memory By Address » 0x36: Exceeded Number of Attempts

» O0x31: Routine Control » Ox7E: Sub-Function not Supported in Active

» O0x34: Request Download Session

» 0x35: Request Upload » Ox7F: Service Not Supported in Active Session

And much more: https://en.wikipedia.org/wiki/Unified _Diagnostic_Services
https://automotive.softing.com/fileadmin/sof-files/pdf/de/ae/poster/UDS_ Faltposter softing2016.pdf

https://en.wikipedia.org/wiki/Unified_Diagnostic_Services
https://automotive.softing.com/fileadmin/sof-files/pdf/de/ae/poster/UDS_Faltposter_softing2016.pdf

UDS request/response are send using the ISOTP protocol
The first byte of the payload is the Service

Other bytes depend on the requested Service

Most of the UDS implementation requires padding

$ candump can0,7e0:7FF
can0 7e0 [8] 0210 01 AA AA AA AA AA

Diagnostic session control with SubFunction 01 (defaultSession)
can0 7e0 [8] 0321 F1 90 AAAAAAAA
Read data by identifier: DID 0xF190

» Multiple automotive contribs exist in Scapy, one of them handle the UDS protocol

load_contrib("isotp") # Loading ISOTP contrib is required to create ISOTP sockets
load_contrib("automotive.uds")

» You can craft a UDS message calling the related UDS Service constructor
Reminder: if you’re running Scapy from the terminal, the autocompletion using “tab” works

ubDS # Press tab to see all the supported services
Is(UDS_DSC) # Is command lists all the arguments
diagnosticSessionType: ByteEnimField =('0")

session = UDS_DSC(diagnosticSessionType = 2)
isotpsocket.send(UDS()/session)
An UDS Service has to be pack into an UDS frame to be sent: UDS/UDS _xx()

Scapy: UDS - some supported services

vV VvV VvV vV VvV VvV VvV VvV VvV VvV YVvYy

0x10: Diagnostic Session Control
0x11: ECU Reset

0x27: Security Access

Ox3E: Tester Present

0x22: Read Data By Identifier
0x23: Read Memory By Address
Ox2E: Write Data By Identifier
Ox2F: Input/Output Control by Identifier
0x3D: Write Memory By Address
0x31: Routine Control

0x34: Request Download

0x35: Request Upload

UDS_DSC
UDS_ER
UDS_SA
UDS_TP
UDS_RDBI
UDS_RMBA
UDS_WBDI
UDS_IOCBI
UDS_WMBA
UDS_RC
UDS_RD
UDS_RU

61

Scapy: UDS - automatic NRC description

» When creating the ISO-TP socket with Scapy, adding basecls=UDS option give a full support of the
UDS protocol, even the NRC automatic translation

isotpsocket = ISOTPSocket("can0", tx_id=0x7e0, rx_id=0x7e8, padding= True,
basecls=UDS)

» Now try an unsupported request on the ECU

isotpsocket.sr1(UDS()/UDS_SA(securityAccessType = 0xFF), timeout=1.0)
Begin emission:
Finished sending 1 packets.

Received 1 packets, got 1 answers, remaining O packets
< = <

= >

» Using the UDS_NR as a constant, you can check if the captured packet is an error, without looking
at the packet data

pkt = isotpsocket.sr1(UDS/UDS_SA(securityAccessType = OxFF), timeout=1.0)
Begin emission:
Finished sending 1 packets.

Received 1 packets, got 1 answers, remaining 0 packets
pkt == UDS_NR # UDS NR in pkt also works

True
pkt.show()

Lab 4 - Scapy and UDS

» This training does not aimed to make you UDS experts, but we will use few basic Services in the
various

» Complete challenges CAN 101 - UDS

64

Automotive Ethernet

Quarkslab

Automotive Ethernet: need for speed

As car are becoming more and more complex (assisted/autonomous driving), there is a growing

>
need for:
» Low-latency
» Robust links over simple wires
» Flexible technologies that cover multiple use-cases

=

66

https://www.vector.com/int/en/products/solutions/networks/automotive-ethernet/

Automotive Ethernet: two standards

» First implementation: 100/1000Base-T1 -
» Defined by IEEE 802.3bw 2015 =
» “Classical’ point-to-point network

» Evolution: 10Base-T1S
» Defined by IEEE 802.3cg 2020
» Multidrop network

67

https://www.redeweb.com/en/actualidad/microchip-presenta-sus-primeros-dispositivos-10base-t1s-ethernet-homologados-para-automocion/

Difference between Ethernet & 100/1000Base-T1

» Only the physical layer differs: -
» Uses single differential unshielded copper twisted pair =
» Uses PAM-3 signalling “
> Maximum length is 15 m =
» Connectors are not defined (no RJ45)
» A node is set as Master, the other as Slave, to handle echo cancellation

Automotive Diagnostics
Audio/Video Network and Flash Control Service Address Address Resolution,
Transport Time Sync Management Update Communication Discovery Configuration Signaling, etc.

IEEE IEEE | | SOME/IP-SD
172 802.1AS UDP-NM‘ DolP SOME/NP DHCP

ICMP
ubpP TCP and/or UDP ubpP ARP

AVB AVB

aswusanansmnasnnsma nwansnnsel osa nns e e m s W s ann oA . R e R Y

IEEE Ethernet MAC + VLAN (802.1Q)

NNy e e it M RS STESSEARnEstoss 10V
100BASE-T1, PAM 3 1000BASE-T, PAM 5

Automotive Ethernet Physical Layer (e.g. OABR)

fHiE

68

IT Standard Automotive

https://inspiredhobbyist.org/what-is-some-ip-in-autosar/
https://blog.guardknox.com

Network topology

>

>

>

ECUs are linked port to port or through switches

An ECU can be a switch (gateway)
Several VLANSs are used for security or to define different levels of quality of services

Cluster View
CAN 1 C:] C:j
ECU1 ECU 2 " ECU3 ECU4
CAN 2 |
&_1//,',) [] | St
VLAN 2 VLAN1 ? 1
Switched Topology ECU3 =]
- - x o
ECU1 ECU2 Switch 2 ECU4
P e v || :
k VLAN1

Switch 1

=

69

https://www.vector.com/fr/fr/produits/produits-a-z/software/preevision/automotive-ethernet-design/#c133576

10Base-T1S Automotive Ethernet

>

>

ECU 1

ECU 2

ECU3

| 2 I
(e}
=
S

ﬂ Heterogeneous Networks Now

CAN-FD

100BASE-T1 I

100BASE-T1 I

100BASE-T1 I

o [)
ECUS5 ECU 8
®| > []
['4
ECUG6 | & ECU9
w
o [}
ECU7 ECU 10

°
|” 8
=
£

ECU 2

ECU3

® L]
=
ES

Allows 2 to 8 nodes to communicate over a single twisted pair, up to 25m

Aims to replace classical automotive networks, like CAN, having an all-Ethernet network

'mn Ethernet Homogenous Network

10BASE-T1S

[[
100BASE-T1 ECUS5 ECUS8
2]
-
®|. @
2
100BASE-T1 ECU6 g ECU9
[[
100BASE-T1 ECU7 ECU 10

=

70

https://www.keysight.com/blogs/en/tech/2024/02/8/how-is-10base-t1s-different-from-can

10Base-T1S Automotive Ethernet

v

But relies on Differential M

vV vV v Vv

ID

Also uses single differential unshielded copper twisted pair

anchester Encoding (DEM) signalling

Bus is terminated by 100 ohms resistors
Each node has an ID, O being for the Master, for the Physical Layer Collision Avoidance (PLCA)
The Master send periodic beacon . Slave nodes are given a transmit opportunity in order of their

» Asilence (Y20 bits) is when a node has no data to transmit. It could also send a commit to buy

additional time to transmit da

ta

i 2 = & 2 @9 L& & &L [seacon 1 commarr IS SILENCE

o [T LAULLT

nRzeam2 [T T[]] L

|
J | TO_TIMER

MAX Packet Size

—l_‘ MIN PLCA Cycle = MIN Latency

=

=

U e oo T o O E—— v o
|

71

https://www.graniteriverlabs.com/en-us/technical-blog/automotive-ethernet-10-base-t1s
https://blog.teledynelecroy.com/2022/08/physical-layer-collision-avoidance-in.html

Connecting to an Automotive Ethernet network

» To connect to an automotive Ethernet network, a Media Independent Interface (Mll) is required

It bridges classical and automotive ethernet physical layers so you can plug an RJ-45

>

ETH2 T1s52; \

DP83848
PHY

(100BASE-TX
Mil
88Q1010 =
AE2 o \
M UX‘
Y USB to Hos!

CoreMini
Processor

(100BASE-T1)

CoreMini
Processor

88Q1010 | Ml |W»I2:E}:20
AE1 S PHY ETH1
(100BASE-T1) (100BASE-TX

usB
Type C

72

https://cdn.intrepidcs.net/guides/rad-moon-duo/Introduction-and-Overview.html
https://intrepidcs.com/products/automotive-ethernet-tools/media-converters/rad-comet-10base-t1s-development-interface/

Automotive Ethernet
DolP

Quarkslab

Diagnostics Over IP

» DolP (Diagnostics Over IP) allows remote and quicker diagnostic of a car (ISO 13400)
» It’s a transport protocol for diagnostic services like UDS over IP
» It also manages specific services like:

» Vehicle Identification

» Routing Activation

» Node information

» Aliveness Mechanism

» |t uses both TCP and UDP

» Must use port 13400

74

Diagnostics Over IP

Vehicle Network

=

75

Vehicle sub-network (.| Vehicle sub-network (..
DolP edge node DolP Network node 1 DolP node
‘ gateway 1 \ e [gateway m EEHN
=< = I IP- based network l oS | I
External Network IP- based network | |
Activation line External test Networknode2 | w m m | Network noden
equipment 1

https://www.embitel.com/blog/embedded-blog/what-are-the-important-security-aspects-of-doip-based-in-vehicle-network-and-related-best-practices

Diagnostics Over IP - Flowchart

Tester Gateway ECU

|

. —
Vehicle Identification /
! _ UDP : Vehicle Announcement (OPT)

|
UDP : Vehicle Identification Request

|
| ol
' _ UDP : Vehicle Identification Response
Establish TCP connection lﬁ
l l
Routing Activation / !
| TCP : Routing Activation Request =

|
| TCP : Routing Activation Response I

Diagnostic Commands / .
T
I TCP : Diagnostic Message !

|
TCP : Diagnostic Message Acknowledgement 1

-
-<

Transfer command to car internal network _
-~

Get command reply

=

_ TCP : Diagnostic Message w/ reply

Close TCP connection Iﬁ

Tester Gateway ECU

76

Diagnostics Over IP - Message

Protocol Version
(0x02)

Inverse Protocol Version

(OXFD)

Payload Type
(0x8001)

Payload Length

Payload

77

Diagnostics Over IP: payload structure

>

>

>

An ECU is identified by its 2 bytes Logical Address

GW/Node Logical Addresses could be obtained using Vehicle Identification Requests

Manufacturer Specific Addresses are in range O0x0001 - OXODFF & 0x1000 - Ox7FFF

Item Position (Byte) Length (Byte)
Source Address 0 2
Target Address 2 2

Data 4

78

Diagnostics Over IP: payload types

0x0001 : Vehicle Identification Request Message

0x0002 : Vehicle Identification Request Message with EID
0x0003 : Vehicle Identification Request Message with VIN
0x0004 : Vehicle Announcement Message/Vehicle Identification Response
0x0005 : Routing Activation Request

0x0006 : Routing Activation Response

0x0007 : Alive Check Request

0x0008 : Alive Check Response

0x4001 : Diagnostic Entity Status Request

0x4002 : Diagnostic Entity Status Response

0x8001 : Diagnostic Message

0x8002 : Diagnostic Message Positive Acknowledgement
0x8003 : Diagnostic Message Negative Acknowledgement

vV VvV VvV VvV VvV VvV VvV VvV Vv VvVYVvVY

1. Entity Identifier, most of the time the MAC address 79

Diagnostics Over IP: sending a DolP request w/ Scapy

» Using “automotive.doip” contrib we can craft/decode packets

» Reminder: to use raw network interfaces, scapy has to be run as “root”

load_contrib("automotive.doip")
s = L3RawSocket(iface="enp0s3")

doip = DolP(payload_type=0x0003, vin=b"VIN1234567890ABCD")
resp = s.sr1(IP(dst="192.168.11.123")/UDP(dport=13400)/doip, timeout=2)

1. https://github.com/secdev/scapy/blob/master/scapy/contrib/automotive/doip.py

https://github.com/secdev/scapy/blob/master/scapy/contrib/automotive/doip.py

Diagnostics Over IP: routing activation

» Before sending Diagnostic Message, a route must be set over TCP
» Using payload type 0x4001, the tester must send a valid Logical Address and an Activation Type
» If the route is correctly set, the DolP gateway/node will return its Logical Address

» When creating a DolP TCP socket using 'DolPSocket’, Scapy will by default set a Source Address
OxE80 and an Activation Type 0x00

load_contrib("automotive.doip")
socket = DolPSocket("192.168.11.123", source_address=0xE80,

activation_type=0x00)
socket = DolPSocket("192.168.11.123") # Does the same

Diagnostics Over IP: sending a DolP message

load_contrib("automotive.uds")

load_contrib("automotive.doip")

uds = UDS()/UDS_DSC(diagnosticSessionType= 0x01)

doip = DolP(payload_type=0x8001, source_address=0xe80, target address=0x17ea)
socket = DolPSocket("192.168.11.123")

resp = socket.sr1(doip/uds, timeout=2)

1. https://github.com/secdev/scapy/blob/master/scapy/contrib/automotive/doip.py

https://github.com/secdev/scapy/blob/master/scapy/contrib/automotive/doip.py

Lab 5 - DolP

» Complete challenges Ignition - Automotive Ethernet

83

Automotive security:
good practices

Quarkslab

Automotive network security: good practices

» CAN networks have known vulnerabilities, including:
» Non encrypted data and non authenticated sender =

» Replayable messages =

=

» AutoSAR implements SecOC to authenticate CAN messages

» Using TLS encryption is also recommended in Automotive Ethernet networks to prevent
man-in-the-middle attacks

» High-end designs already use MACSEC

MsB Ls8 MsB Lse Encrypted
A

Feshness Value Authenticator [\

. 3 DMAC | SMAC [t S PR Te! Payload m CRC

SecOCFreshnessValueTxLength SecOCAuthinfoTxLength /’

-~
~—
)
~
-

~
~—
~
~—
-

l l 25 0)(8805
P
SCI (optional)
R e p— _mn_“"“'
E 8 Bytes 8 Bytes 9

“ 8 or 16 Bytes -—)
Secured I-PDU (Based on SCI) 85

https://www.autosar.org/fileadmin/standards/R20-11/FO/AUTOSAR_PRS_SecOcProtocol.pdf
https://www.keysight.com/blogs/en/tech/traf-gen/2020/08/03/macsec-hardware-testingwhy-back-to-back-validation-falls-short

Quarkslab

Thank you

Contact information:

Email: contact@quarkslab.com
Phone: +33 158 30 81 51

Website: www.quarkslab.com

D
—/

@ 3 @quarkslab

mailto:contact@quarkslab.com
https://quarkslab.com/

